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Abstract

AN INTRODUCTION TO SUPERSYMMETRIC QUANTUM MECHANICS

By Vincent Ronald Siggia

A Thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science at Virginia Commonwealth University.

Virginia Commonwealth University, 2019.

Director: Dr. Marco Aldi,

Assistant professor, Department of Mathematics

In this thesis, the general framework of supersymmetric quantum mechanics
and the path integral approach will be presented (as well as the worked out example
of the supersymmetric harmonic oscillator). Then the theory will be specialized to
the case of supersymmetric quantum mechanics on Riemannian manifolds, which will
start from a supersymmetric Lagrangian for the general case and the special case for
S2. Afterwards, there will be a discussion on the superfield formalism. Concluding

this thesis will be the Hamiltonian formalism followed by the inclusion of deforma-

tions by potentials.

iii
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CHAPTER 1

INTRODUCTION

Quantum mechanics is one of the most important physical theories to come out of
the 20th century. Without its development, many technologies and other physical
theories would simply not exist. After quantum mechanics came quantum electrody-
namics (QED), the first theory to successfully marry quantum mechanics and special
relativity. Then with the discovery of new particles that decay rapidly came the de-
velopment of the theory responsible for the Weak force and eventually the unification
with electromagnetism under the Electroweak theory. Afterward, the development
of the Standard Model and quantum chromodynamics (QCD) have rounded out our
understanding of particle physics. With the discovery of more fundamental particles
and experiments verifying its many predictions, the Standard Model has become a
pinnacle of human intellect.

Through out each of these descriptions of physical phenomena, symmetries are
at the core. The unification of electromagnetism and the weak interaction is accom-
plished using U(1) x SU(2), while QCD is described by SU(3). However, in order
to develop unified physical theories, i.e. the inclusion of Einstein’s theory of general
relativity into the Standard Model, new symmetries must be proposed. Currently the
Standard Model One of the proposed methods of unification is the use of, what is
called, supersymmetry. Supersymmetry, in a nutshell, is a proposed fundamental sym-
metry that relates bosons and fermions. Any physical theory, classical or quantum,
can incorporate supersymmerty. The framework that will be discussed in chapter 2 is

at the core of any supersymmetric theory, whether it is quantum machanics or quan-
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tum field theory. Referring to chapter 3 of this thesis, the main example starts with a
supersymmetric Lagrangian in the classical setting and then upon quantization main-
tains the supersymmetry. One of the advantages of supersymmetry, from the point
of view of running calculations, is that supersymmetry provides a mechanism for the
cancellation of the ultraviolet divergences that arise in any realistic quantum field
theory in the traditional sense [1].

Supersymmetry has a fascinating history. Before the first notion of supersym-
metry, a precursor to the modern theory harkens back to the time of Schrodinger.
In two of his papers, Schrodinger presents a method of solving differential equations
by factorization and even solves the harmonic oscillator and non-relativistic hydro-
gen atom using this method [2, [3]. Schrédinger’s approach at first glance looks like
a mathematical trick but is actually closely related, if not equivalent, to part of
the requirements of supersymmetric quantum mechanics. For example, consider the

eigenvalue problem
(0.0, — 1) = b (1.1)
Under Schodinger’s factorization method, this can be factorized two ways as

(0r +1)(0: — Db = (1.2)

(0r — 1)(0: + 1) = M. (1.3)
Now taking the sum of both equations, we have
(0 +1)(0r — 1) + (0r — 1)(0x + 1)] 0 = 2X1). (1.4)

We maintain this form because, in general, the two “factors” in each term may not

commute; however in this example they commute. Realizing that the left hand side
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is simply an anti-commutator, we have
{0, + 1,0, — 1} = 2(9,0, — 1), (1.5)

matching part of the definition of supersymmetric quantum mechanics; that will be
later defined at the beginning of Chapter 2.

Afterwards in the early 1960’s, Gell-Mann and Ne’eman successfully described
the relations between various strongly interacting, same spin particles of different
charge and strangeness using the group SU(3) 5. Later in 1967, the Coleman-
Mandula theorem was proved using less restrictive assumptions [4].

The Coleman-Mandula Theorem states:

Theorem 1 Let G be a connected symmetry group of the scattering matriz, i.e. a
group whose generators commute with the scattering matrixz S, and make the following

five assumptions:

1. Lorentz invariance: G contains a subgroup which is locally isomorphc to the

Poincaré group.

2. Particle finiteness: All particle types correspond to positive-energyrepresentations
of the Poincaré group. For any finite mass M, there is only a finite number of

particles with mass less than M.

3. Weak elastic analyticity: FElastic scattering amplitudes are analytic functions
of the center-of-mass energy squared s and the invariant momentum transfer

squared t in some neighborhood of the physical region, except at normal thresh-

olds.

4. Occurrence of scattering: Let |p) and [p') be any two one-particle momentum
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eigenstates, and let |p,p’) be the two-particle state constructed from these. Then

Tlp,p') #0
where T is the T-matrixz defined by
§ =1 i(2n)'5*(p, — p})T

except, perhaps, for certain isolated vaules of S. In simpler terms this assump-

tion means: Two plane waves scatter at almost any energy.

5. Techical assumption: The generators of G, considered as the integral operators

in momentum space, have distributions for their kernels.

Then the group G is locally isomorphic to the direct product of a compact symmetry

group group and the Poincaré group.

Since this theorem only applies for transformations that take fermions to bosons
and vice versa, supersymmetry is the only possibility [1}, |4]. However, this fact was
not immediately realized; instead supersymmetry developed independently from the
Coleman-Mandula theorem in a series of papers on string theory [1}, 4].

Currently, supersymmetry is used in string theory and quantum field theory
in order to unify the standard model with Einstein’s theory of relativity. In the
experimental setting collider experiments, like the Large Hadron Collier (LHC), are
on the look for the lightest supersymmetric particle (LSP). LSP is generic name given
to the lightest particle in a SUSY theory. Due to constraints from cosmology, the
LSP must be neutral, weakly interacting, and stable [6, |7]. The current candidates
amoung the superparticles are the sneutrino, the neutalino, and the gravitino [6, |7].
The sneutrino and the neutalino are expected to have an upper mass limit of 1TeV

while the gravitino’s upper mass limit is much less than 1keV [6} 7] 4]
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However, as of May 2019, there is no evidence confirming the existence of su-
perpartners; which either means that supersymmetry does not exist in nature or
supersymmetry is broken at the energy levels available [1]. Despite the lack of confir-
mation, there is one source suggesting that their data fits the behavior of stau decay
into a tau lepton, however it is too early to confirm [§].

In order to understand supersymmetry, this thesis will examine some conse-
quences of supersymmetry. This will not be a thorough examination of the subject,
merely an introduction to the area in order to understand how supersymmetry works.

In Chapter 2, we begin with defining supersymmetric quantum mechanics and
explore some immediate consequence. Then, we will work out the supersymmetric
version of the harmonic oscillator. Finishing out the chapter will be quick a discussion
of the path integral approach to quantum mechanics.

Afterward, Chapter 3 begins with working out the general case of supersymmetric
quantum mechanics on Riemannian manifolds, so that general relativity can later be
incorporated, and a special case for the surface of a sphere starting from a Lagrangian.
Next, we will look into the superfield formalism. Then we will go through the general
case and the special case of S? again but in Hamiltonian formalism. Concluding this
thesis will be a discussion of deformations by outside potentials to the theory laid out

in Chapter 3.
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CHAPTER 2

SUPERSYMMETRIC QUANTUM MECHANICS

Through out this chapter, we will discuss concepts and the framework necessary for
supersymmetric (SUSY) quantum mechanics. The framework presented in this chap-
ter can be applied to any physical theory, either in the classical setting or quantum
setting, and it is at core all SUSY quantum field theories (QFT).

Starting off the chapter, we will define supersymmetric quantum mechanics.
Then we will work out how the bosons and fermions are related under SUSY. Next,
there will a discussion of the Witten index. Afterwards, the SUSY harmonic oscillator

will be worked out. Finshing out the chapter will be the path integral approach. This

chapter will cover concepts from references ﬂg], , .

2.1 General Formalism

A Z,-graded Hilbert space of states H is the direct sum of two Hilbert spaces:
the bosonic (even) states HP, and the fermionic (odd) states H. With respect to
the decomposition H = HP @ H!'| the Z,-grading is defined by the eigenvalues of the

operator (—1)¥, which can be represented in block matrix form as

(-DF = : (2.1)
0 —1
More precisely, the Z,-grading behaves as
(=1)F [p=1d

(—=1)F |yr= —1Id.
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Here even and odd can also describe operators. An even (bosonic) operator means
that some operator A commutes with (—1)". Conversely, odd (fermionic) operator
means that some operator B anti-commutes with (—1)".

Supersymmetric quantum mechanics is a quantum theory with a positive Z,-
graded Hilbert space of states H with an even operator H as the Hamiltonian and

odd operator ) and Q' as supercharges. These operators obey the relations:

Q*=Q"=0 (2.2)
{Q, Q" = 2H, (2.3)

where is the anti-commutator
{A, B} = AB + BA.

Here this is the natural commutator for a pair of odd operators. Should the operators
both been even or one evan and one odd, the regular commutator would have been

the natural choice. As a result, the supercharges are conserved:
[H,Q] = [H,Q'] = 0. (2.4)

Hereafter Qf and ) may be used interchangeably.
The Hamiltonian preserves the decomposition H = H? @ H! while the super-

charges map one subspace to the other:

Q,Q": HP — HF,

Q,Q": H — HB.

So an arbitrary vector |v) decomposes as
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where |[vP) € HP and [vF) € HF, and thus
H(=1)"|v) = H |vP) — H |vF).
Since the Hamiltonian is even, we can factor out the Z,-grading to get
H(=1)"|v) = (=1)"H |v). (2.5)
Similarly without loss of generality, the supercharges act on the vector |v) as
Q(=1)"|v) = Q[v7) = Q).

Since the supercharges are odd, factoring out the Z,-grading brings in a negative sign

to get
Q(=1)"v) = = (=1)"Q|v) (2.6)
Q=1 o) = =(-1)"Q" |v). (2.7)
The first consequence of how supersymmetric quantum mechanics is defined and

the positive-definiteness of the Hilbert space is that the Hamiltonian, following di-

rectly from eq.(2.2), is a non-negative operator

H={Q.Q'} 20 (2.5)

To show this we take

(W] H ) = 5 0| QQ' o) + 5 (] Q'Q o).

and note that (v|Q = QT [v) and (v| QT = Q |v). Therefore

(v Hlo) = SQTT0) - Qo) + 5 @10 - Qo).

1
2
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where the dots are the standard dot product for Hilbert space H. From here we can

note that both terms on the right hand side are non-negative

1 1
(vl H1o) = 51@" ) |+ 511Q le} IP 2 0,

due to the dot product of conjugate pair of vectors |A),|A) is a norm, which by

definition, is non-negative. A state has zero energy if and only if it is annihilated by

Q and QT:
Hl|a)=0<+= Qla)=Q'|a) =0. (2.9)

To show the backward direction is quite simple. Assume that @Q|a) = QT |a) = 0,

then the Hamiltonian acting on a vector becomes
Hlv) = SQ@ ) + 59 Qo) = 0.
For the forward direction, assume that H |o) = 0. Since
(o] Hla) = 5 (01QQ"]0) +  (alQ'Qla)
is non-negative, this implies that
Qla) = Q'a) = 0.

Due to the non-negativity of the Hamiltonian, a zero energy state is a ground state,

(v| H |vy = E(v|v) = E > 0.

States that are annihilated by @ or Q' are states invariant under the supersymmetry
and are called supersymmetric states. What we have seen above is that a zero energy

state is a supersymmetric state and vice versa. Thus, in what follows we call such a
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state a supersymmetric ground state.
The Hilbert space can be decomposed in terms of eigenspaces of the Hamiltonian

when H,) is defined such that for all n€ N
H= & Hp (2.10)
H|H(n) =F, Id|H(n). (2.11)

Since @, Q" , and (—1)F commute with the Hamiltonian, these operators preserve the

energy levels:

Q.Q" (=1) : Hiwy — Hw). (2.12)

To show that two operators that commute preserve the eigenvalue, first assume
there are two commuting operators A and B which are acting on an eigenstate of A

denoted as |A). Since the two operators commute,
AB|A) = BA|A) .
Since the A is now acting its eigenstate,
AB|A) = BX|A),

where A is the eigenvalue of A. Since scalar values commute with operators, the A

can be pulled out front of the operator B
AB|A) = AB|A),

thus showing that the eigenstate is preserved.
In particular, each energy level H,) is decomposed into even and odd (bosonic
and ferimonic) subspaces

Hny = Hioy ® Hip,s (2.13)
10

www.manharaa.com




and the supercharges map one subspace to the other

Q.Q": H) — M, (2.14)
Q. Q" : My — H. (2.15)

Now let us consider Q; = Q + Q'. Due to eq.(2.2), only the cross terms of squaring

()1 survive, which by eq.(2.3) is twice the Hamiltonian.
Qi =QQ"+Q'Q=2H (2.16)

This operator preserves each energy level, mapping ng) to Hf;) and ’Hf;) to ’Hffz).

Since Q? = 2F,, at the n'® level, as long as FE,, > 0, Q; is invertible, i.e.

a1 @
Q' =55 (2.17)
and defines an isomorphism
Hiy = Hiy- (2.18)

Thus the bosonic and fermionic states are paired at each excited level. At the zero
energy level H ), however, the operator (), squares to zero and does not lead to an
isomorphism. In particular the bosonic and fermionic supersymmetric ground states
do not have to be paired.

Now, let us consider a continuous deformation of the theory (i.e., the spectrum
of the Hamiltonian deforms continuously) while preserving supersymmetry. Here the
excited states (the states with positive energy) move in bosonic/fermionic pairs due
to the isomorphism discussed above. Some excited level may split into several levels
but the number of bosonic and fermionic states must be the same at each of the new
levels. Meanwhile, some of the zero energy states may acquire positive energy and

some positive energy states may become zero energy states, but those states must

11
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again come in pairs of bosonic and fermionic states. This means that the number of
bosonic ground states minus the number of fermionic ground states is invariant. This

invariant can also be represented as
dim H G, — dim H{p) = Tr(—1)"e 1. (2.19)

For the explicit calculation refer to Appendix B. This is because in computing the
trace on the right-hand side, the states with positive energy come in pairs that cancel
out when weighted with (—1)f and only the ground states survive. This invariant
is called the supersymmetric index or the Witten index and is sometimes also denoted
by the shorthand notation Tr (—1)" .

Since Q? = 0 we have a Z,-graded complex of vector spaces
HE L yB O yF 2 B, (2.20)

for more information on Z-graded spaces, refer to Appendix A. Due to Q% = 0, this
implies that when @ acts on a vector in either H¥or HP, @ takes the vector to a

subset of the other space, i.e.
Im@ C Ker@ (2.21)

where Im(@) is the image of () and Ker( is the kernel of (). Now consider the coho-

mology of this complex, i.e.

o KerQ : HB — HT
© ImQ:HF — HB
o KerQ : HI — HB
 ImQ:HB — HE

(2.22)

(2.23)

The complex shown in eq.(2.20) decomposes into energy levels. At each of the excited

levels, the complex is an exact sequence, making the cohomology vanish. This is seen

12
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by noting that if the vector |a) at the n'® level is Q-closed, Q|a) = 0, then by the
relation 1 = % that holds on H,)we have |a) = %lo‘>; namely |a) is Q-
exact. At the zero energy level H(0), the coboundary operator is trivial, @ = 0, and
the cohomology is nothing but H? and H¥ themselves. Thus, we have seen that the

cohomology groups come purely from the supersymmetric ground states

In other words, the space of supersymmetric ground states is characterized as the
cohomology of the (Q-operator.

So far, we have assumed only the Z,-grading denoted by (—1)f . Note that in
some cases there can be a finer grading such as a Z-grading that reduces modulo 2 to
the Zy-grading under consideration. Such is the case if there is a Hermitian operator
F with integral eigenvalues such that '™ = (=1)F . The Hilbert space H can be
decomposed with respect to the eigenspaces of F' as H = @®,czH” and the bosonic and
fermionic subspaces are simply H? = @peven HP and HE = @podd HP. Furthermore, if

@ has charge 1, i.e.
[F, Q] =Q, (2.25)

the Zy-graded complex shown in Eq.(2.20) splits into a Z-graded complex

Lyt Gy Gyt & (2.26)

refer to Appendix A for an explicit derivation of eq.(2.26). There is also a cohomology

group for each p € Z:
_ Ker@ : H — HPH
© ImQ : HPl — Hp

H(Q) (2.27)

Of course, the space of supersymmetric ground states is the sum of these cohomology

13
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groups and the bosonic/fermionic decomposition corresponds to

Hiy = @ H(Q), Hipy = & H(Q). (2.28)

peven podd

The Witten index is then the Euler characteristic of the complex

Tr(—1)" = (~1)”dim H*(Q). (2.29)

peZ
It is possible to generalize this Z,-grading to the case with a Zy,-grading. However

this is beyond the scope of this thesis and will be left as an exercise for the reader.
2.2 Example: The SUSY Harmonic Oscillator

In the particular case of the SUSY harmonic oscillator, the Hilbert space decom-

poses as
H=HoH", (2.30)
with
HP = L*(R,C)|0) (2.31)
HE = L*(R,C) ¢ |0), (2.32)

where L? (R, C) is the Hilbert space of the bosonic harmonic oscillator, on which Hs,.
acts non-trivially and C? := C |[0) @ C ¢ |0) is the space on which Hp acts non-trivially.

In the {|0), |0) basis, the the two states are represented as

0) = , |0) = : (2.33)

14
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Suppose the Hamiltonian for our quantum mechanical system is

H = % (p* +w*s® +w [¥,¢]). (2.34)

To check that this Hamiltonian is supersymmetric, consider the supercharges

Q =¥ (ip + wa) (2.35)

Q" = (—ip + wx), (2.36)

where t,7) are fermionic (odd) variables that augment physical space to describe

fermions, and the canonical commutation relations

[z,p] =i (2.37)
{00} =1, (2.38)
where p and x operators
p=—i0, (2.39)
T =, (2.40)

where the dot represents the act of multiplication, act on f € L?(R,C). Using the

anti-commutator of the supercharges, we have

{Q,Q" = v (p + w’a® + iwpz — iwap) + b (P + w’a® — iwpx + iwxp) . (2.41)

Using the commutation relation from eq.(2.37), we have

{Q,Q"} =¥y (p* + w?a? +w) + v (p* + wa? —w). (2.42)

15
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Regrouping this by like terms, we can say that
{Q,Q" = (0° +w?a®) (V0 + ) +w (Vv —vy) . (2.43)

Now using the anti-commutation relation from eq.(2.38), we get twice the Hamilto-

nian.

{Q.Q" = (v +wa?) +w v, ] (2.44)

Now in order to determinw the eigenvalues/energy states for this system, first

define
Hp = % (p* + w’z?) (2.45)
Hp =w [, ¢]. (2.46)

Since this two pieces of the Hamiltonian commute with each other, they share common
eigenstates. Therefore the eigenvalues for each part can be found using the same
eigenstates. So for Hp it is commonly known that for the harmonic oscillator that

the energy states are

1
EP = B2 = |u| (n ; 5) | (247)

where n € Z>¢; for the explicit calculation of the ordinary harmonic oscillator energy

values refer to Appendix C. Now for the fermionic part, using the matrix representa-

tion of 1 and v as

v = , Y= (2.48)

16
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in the {|0),% |0)} basis, the Hamiltonian for the fermionic part becomes

10
Hy = g . (2.49)
0 1

From here, it is clear that the two eigenvalues are

Ep = :|:|ZJ—| (2.50)

since w = £+/k/m.

Now looking at the combined spectra yields
Er+ EP = |wn (2.51)

where n € Z>o. From here it is easy to see that there is a supersymmetric ground
state at n = 0.
We now calculate the partition function and the Witten index. Given the fac-

torization of the Hilbert, the partition function and the Witten index are given by

7 (B) := Tre P =Tre PHE . Ty e PHF (2.52)

Tr(-1)" :=Tr [(—1)F e_BH} =Tre P . Ty [(—l)F e_ﬁHF] . (2.53)

Now calculating the individual parts, we can use the eigenvalues from eq.(2.47) and

eq.(2.50) to get

Tre e = Z e B (nt3)lel (2.54)
n=0
Tre PHr =emPw/2 4 cf/2 (2.55)
Tv [(—1)F e_BHF] —e P2 _ w2, (2.56)
17
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To evaluate the infinite sum in eq.(2.54), we can rewrite the summation as
o
Tre PHE — o3B! Z e Plwln/2, (2.57)
n=0

Since this is a infinite geometric series where e=?l < 1, the summation becomes

—1 8wl
T‘I'G_BHB = ﬁ (258)
This reduces to
1
Tre PHs = (2.59)

— eBlwl/2 — g—Blwl/2”

Using eq.(2.55), eq.(2.56), and eq.(2.59), the partition function and the Witten index

become

e—Bw/2 + ebBw/2

Z(B) = s — g-pair2
e—Bw/2 _ Bu/2

= Blwl/2 — o—Blwl/2

(2.60)

Tr(—1)" (2.61)

By definition the partition function reduces to hyperbolic cotangent

Z (B) = coth (@) , (2.62)

Then by examining the cases when w > 0 and w < 0, the numerator and denominator

only differ by a sign, i.e.
Tr(—1)" = +1. (2.63)

Note that the partition function depends on the circumference 8 of S* whereas the
supersymmetric index does not.

Now calculating the cohomology for the SUSY harmonic oscillator, we let @ act

18
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on an arbitrary vector [v) = f]0) + g¢ |0) to get

Q|v) = ¥ (ip + wz) f10) + 1 (ip + wz) g |0) . (2.64)

Since the fermionic variables annihilate themselves, we have

Qv) =¥ (ip +wx) f10). (2.65)
This means that
mQ:H" — HE=¢ (2.66)
Im@Q:H” — H' = L*(R,C) (2.67)
Ker@ : H" — H” = L* (R,C) (2.68)
Ker@Q: H” — H" ={f e L*(R,C): (ip+wa)f =0}, (2.69)
where ¢ is the empty set and p = —id, under the canonical quantization. From here
we can see that
flz) = Ae 2", (2.70)

where A is a constant, and the cohomology is one dimensional and concentrated in

even parity.

HB(Q)=C (2.71)

HY(Q)=0 (2.72)
2.3 The Path Integral Approach

The independence of the supersymmetric index from 3 can be exploited to relate
it to computations done in zero-dimensional QFT. Namely we consider the limit

B — 0, in which case in the path-integral computation, only the time independent
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modes contribute, and we are left with a finite-dimensional integral that is exactly the
same integral found in the context of the zero-dimensional QFT. This also explains
why the Witten index is equal to the partition function for the supersymmetric system
considered for the zero-dimensional QFT.

Ordinarily, the Feynman path integral version of the partition function is
Z = / DX 50 (2.73)
where S (X) is the action

S(X) = / Lt (2.74)

Since S (X)) is real, we are summing up phases associated with different paths and
the convergence of the integral is a subtle problem. By considering the “Euclidean
theory”, we can avoid dealing with the different phases. This is obtained by “Eu-

clideanizing” the time coordinate ¢t by the so-called Wick rotation:
t — —iT. (2.75)

Then the action S (X) — iSg (X), where Sg (X) is the Euclidean action. This in

turn defines the Euclidean partition function to be
Zp = / DX e %8X), (2.76)

Another way to think about the Wick rotation is that, in the setting of QFT, in
which uses a Lorentzian (Minkowski) metric, this will change the geometry of the
space-time from Lorentzian to Euclidean. This in turn makes the geometry and
calculations easier to held.

Now suppose there is a supersymmetric quantum mechanics which comes from a
F,—BH

supersymmetric Lagrangian. Then the Witten index Tr(—1) and the partition

20

www.manharaa.com




function Z(8) = Tre ™ on a circle of circumference 3 can be define in terms of a

“Fuclideanized” path integral as
Z(B) = Tre ¥ = / DXDYDP|ppe S (X00), (2.77)
Tr(—1)F = Tr(—1)Fe P2 = / DX DYDY |peS(X0¥), (2.78)

where the AP and P on the measure represents the use of antiperiodic and periodic

boundary conditions on the fermionic fields:

(0) = —¥(), (2.79)
(0) = +(B). (2.80)

<

AP = 4(0) = —v(p),
P (0) = +v(8),

<

The fact that inserting (—1)f" operator corresponds to changing the boundary
conditions on fermions follows from the fact that fermions anti-commute with (—1)%".
So before the trace is taken, the fermions are multiplied by an extra minus sign. What
is not completely obvious is that without the insertion of (—1)!" the fermions have
anti-periodic boundary condition along the circle. To understand this, let us consider
the correlation functions on the circle with insertions of fermions. Due to the fermion
number symmetry, the number of ¢ insertions must be the same as the number of 1
insertions for the correlators to be non-vanishing. We consider the simplest case with
the insertion of 1(¢;) and v (t5). Let us start with £, = 0 < ¢; < 3, and increase t, 50
that it passes through t; and “comes back” to 5. Due to the anti-commutativity of
the fermionic operators, when ¢, passes through t;, the correlation function receives
an extra minus sign. Thus, the ordinary correlation function (¥(t;)1(t;)) sy, which
corresponds to the trace without (—1), is antiperiodic under the shift to — to + 3.

We saw in the operator representation that Tr (—1)Fe is independent of /3.

What this means in this context is that in the path-integral representation on a circle
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of radius # with periodic boundary conditions, the path-integral is independent of
the radius of the circle. One can directly see this in the path-integral language as
well. Namely, the change of the circumference is equivalent to insertion of H in the
path-integral. This can in turn be viewed as the ) variation of the field QT (in view of
the commutation relation {Q,Q'} = 2H). For periodic boundary conditions on the
circle, @ is a symmetry of the path-integral (this only exists for periodic boundary
conditions for fermions because there is no constant non-trivial e that is anti-periodic
along S'). And as in our discussion in the context of zero-dimensional QFT, the
correlators that are variations of fields under symmetry operations are zero. Thus the
insertion of H in the path-integral gives zero, which is equivalent to § independence

of the Witten index in the path-integral representation.
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CHAPTER 3

SUSY QM ON RIEMANNIAN MANIFOLDS

We now specialize the general framework discussed in chapter 2 to the important ex-
ample of SUSY quantum mechanics constructed out of geometric data; more specif-

ically, the supersymmetric sigma model. This section will cover quantum mechanics
concepts from references ﬂ§]7 , , , , and concepts from differential geometry
from references [9} [13 [14].

In the following sections, an in-depth look of a supersymmetric sigma model,
as well as some worked on examples are presented. In particular, we will start off
showing that a Lagrangian for a Riemannian manifold is supersymmetric under some
SUSY transformations and derive the supercharges and Noether charge. Then we
will specialize these calculation to the special case of S?. Afterward, there will be
a discussion on the superfield formalism in order to understand how to generate
supersymmetric Lagrangians and SUSY transformations. Next, we will quantize both
the general and S? cases and examine the Hamiltonians. Finally, we will include

deformations by outside potentials into the theory laid out in this chapter.
3.1 The General Case

So consider the Lagrangian

L= %gﬂd)]éj + %QIJ (%ID%/JJ - DJIW) + %RIJKLQpIaJwKEL (3.1)

where the covariant time derivative is
D' = 0" + Tl 0", (32)
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with T/ 5 being the Christoffel symbol defined as

1
Lis = 59" (055 + 05050 — O5Gas) - (3.3)

Under the supersymmetry transformations

5! = e — &t (3.4)
op! = e (i! — TLu"0) (3.5)
00" =7 (=id —Thu"y’), (3.6)

where € and € are fermionic numbers, the action is invariant
55:5/Ldt:0, (3.7)

making the classical system supersymmetric. To show that this is true, we assume a
symmetric metric tensorg;; = gy and normal coordinates i.e. the expression involving
the metric are calculated in coordinates such that dxg;; = 0 (so that in particular
all Christoffel symbols vanish too). More precisely this is assumed at a given (but
arbitrary) point, in particular higher derivatives of the metric cannot be assumed to
vanish.

For brevity we can take the variation of the Lagrangian so that there are only
€ terms since the € terms will mirror the same process through out the following
calculations. Therefore the variation of the Lagrangian with respect to € is

0L = %guéé%" + %QIJ§2>15¢3J+
b sous [T0007 + T 0,0 ,66700° — 0,160 0 — 05| (3.9)
+ %OWRIJKLCSW@/JIEJlPKEL + %RIJKL (5¢IEJ¢KEL + @Z}IEJ&PKEL) :

Here we can rearrange the variation factors so that they are the leading factor in the
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four fermion terms and multiply both side by two.

20L = g1,00'¢” + 910" 60"+ (3.9)
tigry [01000 + 0" 0,T 807600 — 0,1 0070 0 - 05 v |
+ 87R1JKL5¢7¢IEJ¢KEL + Rijkr (MJIEJlDKaL + 5¢K¢IEJEL> -
Now using the e part of the supersymmetry transformations
2L = 91,000 ¢’ + egrs8' 00" + igr, [ﬂleat (Z¢J - Fiﬁ’wﬁ)
5 0, e o — ed, T 0" ey — ia@’w’sJ] (3.10)
+ &yRUKLGEY?/)IEJwKEL + €eRkL [MIEJWK@L + MKWEJEL] ;

we can separate the terms into three cases based on the number of fermionic variables:

1, 3, and 5. Doing this we get
14 : 26L = egrydd’ &7 + egrsd 03" — grsb' e + grs0ib’ ed’ (3.11)
3 : 20L = igry [—Efeavrgﬁmwﬁ + 3 0T el o — 0 TL " 6" wJ]
+i€RrKkL [élaJQﬁKEL + QgK@/JIEJEL] (3.12)

5 26L = 8, Ryyxcrey v EO". (3.13)

When we bring € out front for each term, it picks up a negative sign for every other

fermionic variable it crosses.

19 : 20L = eguaﬂlgﬁ‘] + eguq.ﬁl&ﬂj + Engaléj - egué)ﬂlg{ﬁ‘] (3.14)
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3 20L =igr, [€Elawriﬂ¢7@a¢ﬁ - Ealawri[@véa@/}ﬁ - ef%FingﬁaWw"]
+ieRke [éIa‘]?ﬁK@L + q‘ﬁKW@J@L] (3.15)
5 26L = 0, Ryyxcrep v E9" (3.16)
. Now dealing with the one fermion part in equation (3.15), we have
I :20L = ¢ (guatl_/flﬁgj + gIJQBIatl_[JJ + QIJEIJ;J — gIJatEId)J) : (3.17)

By noting that the metric tensor is symmetric and that fermionic variables can com-

mute with bosonic variables, the second and forth terms cancel.

10 20L = e (91,00 & + 9103 (3.18)
Then by noting the total time derivative of g; ']EIJ)J is
Oy (guﬁlé") = 3791‘](/‘57@%] + gIJatE%J + gIJEIéJa (3.19)
where 0,97 J@@Iq}] = 0, we have that
b+ 26L = € (guata’é" n gfﬂfqié") —0. (3.20)

Now moving on to the three fermion part in eq.(3.16), let us expand the Christof-

fel symbols using the definition in eq.(3.3).

i _ -
5€91 [0 97°0, (Dagiss + Dogsa — Dagas) 670 1

— 0 978, (Dagss + 039sa — Osgas) U ¢ 0° (3.21)
—9"°0, (0agss + 05950 — Osgas) Wé%ﬁib‘j]

+ieRpe (10050 + §F 01"

3 :20L =
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Now summing over J in the first two terms and in [ in the third term, we have

3 20L = %6 [Elg}sav (Dagss + O89sa — Osgap) &Y Y7
~ 0430, (0ug55 + 0350 — Osap) 090 (3.22)
G50, (Oagss + Dagse — Dsas) 670" |
+i€R kL (@I@J?PK%L + (bKiﬁIEJEL) :
Now summing over the remaining lower indices of the leading metric tensor in the

first three terms gives

3 :20L = %6 [555% (00985 + 9950 — Osgas) @Y VP
~ "0, (Bagas + Opgsa — Osgas) V' 0 (3.23)
—0y (9a9ps + 05950 — O59ap) W@%Biﬂ
+icRue ("0 050" + 950G

Then by noting that the v factors anti-commute in conjunction with that facts that

the order of derivatives does not matter and the metric tensor is symmetric, we have

31 :20L = %6 [E‘;c‘% (Oagss — Osgap) @10 P — E(say (Oagps + 05gsa) 0 67 (3.24)

—0, (Dagss — 05900) 06700 + ieRugrcr, (8107 0N9" + ¢4 0070")

For convenience, we can rearrange the factors in the first three terms, without a

change of sign, to get

30208 = S [0, (ugss — ros ) FTT 0" — 0, (ugss + Do) 570

— 0, (0ug3s — Dsgas) 6°0 00| + ieRygicr, (60 WR0" 4+ $FpB0") - (3.25)

Note in the previous equation the two underlined terms. Since the order of derivatives
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does not matter, these two terms cancel. This leaves us with

30 201 = e [~0,000058 T TV’ ~ 0,059500T T (3.26)

—0, (M — 859(1[3) éafﬂﬁw] +ieRrjkL (QBIEJ@/JK@L + ¢ WEJEL) .

Again note in the previous equation the two underlined terms. Since the order of

derivatives does not matter, these two terms add up. This leaves us with

3 : 2L = %e (—28785%545@5@%5 — 0,059500" 0 B U + 0,05 9050 & wé)

+ieRrKL (éI@JQﬁKJL + dJK@/)IEJEL) : (3.27)

Once more, note in the previous equation the two underlined terms. Swapping the
order for the 1 in the second underlined term gives us a negative, allowing for these

two terms add up. This leaves us with
. . . '7—5—(1 8 a0y i
3 20L = —ie (378(;gag¢ Yy Y’ 4 0,0895007Y Y Y )
tieRcs (670 6T + S pIETE"). (3.28)

For convenience, we can swap the order of the factors in EJwKEL and @Z)IEJEL in
order to not pick up a negative sign, i.e. make an even number of permutations to

the fermionic variables.

3 : 20L = —ie (ava(;gaw@%‘“w + avaggaaé‘%%”zbﬂ)

tieRumes (670 TR + P ). (3.20)

Now for the last term, the Riemann curvature tensor is defined, in terms of derivatives
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of the metric tensor, as
1
Rrjkxr = 5 (5J3K91L + 813L9JK - 5J5’L91K - 315K9JL)
+ Gap <F?KF?L - F?LF?K> : (3.30)

Since we are using normal coordinates, the Christoffel symbol terms disappear. This

makes the three fermion part become
. 6« s =0
30 201 = —ie |0,050050 0 007 + 0,050500"0 0 0| (3.31)
7 T J K KTJ7L 1
+ 5e (Dudicgie + 0r0Lgsx — Dsduguc — Odicgun) ($0 PV + GRUTE T).

Now since the ¢ factors anti-commute, the last two terms of the curvature tensor

become zero.
. s T
30 261 = —ie |0,050050"F 0"V + 0,055 0D B0 | (3.32)
+ %6 (050K g1 + 019L9sK) (&%LEJ#JK + é@"@%’) :
By expanding this out
, b P
30 20L = —i € |0,050050"0 V7 + 0,050500"0 00| (3.33)
+ %E [(3J3K91L + 818L9JK) éI@LEJ@/JK + (aJaKgIL + 8IaLgJK) éKEJELQﬂI] )
we can see that the underlined terms add up to get

3 : 201 = —ie |0, 0590500 U V7 + 0,059500" 0 0| (3.34)

+ %6 [(23J3K91L + 010190k ) SO ¢ 3J3K91L<Z.5KEJEL¢I] :
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Similarly, the two underlined terms add up to get
. VIAS 770
302 26L = —ie [0,0500p 0 TG + 0,05950 70 00| (3.35)
+ i€ (0;0k g1z + 010197k ) QBI%LEJ@DK =0,

which we can see reduces to zero.
Now moving on to the five fermion part, we can insert the definition of the

Riemann curvature tensor to get

51 : 20L = %87 (050K g1 + 010r95x — 070191 — 010K g1) WW%J@DKEL- (3.36)

Now since the v anti-commute while the order of derivatives does not matter, the

first three terms are zero.
€ —y =J  g—L
5¢ :20L = —587810K9JL¢ ¢ 1/) ¢ w (337)

Now since the metric is symmetric while @J and EL anti-commute, the remaining
term is also zero, showing the the action is invariant.
So by the Noether procedure, by taking € to be time dependent, we can find the
conserved supercharges
Q =igid' ¢’ (3.38)
Q" = —igry'’. (3.39)

To show this, we vary the Lagrangian as we did previously in eq.(3.9) only taking the

¢ terms. However, since € is now time dependent, the only terms that will change are
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the terms containing time derivatives.

295L =egrs00' & + egrsd' 00"
tigry [i0'ed” + 0'e0, (167 — TL0"0P) + 00, Tl dow’ (3.40)
e, Tl 0 — 0 €7 | + 0y Ruscred w9 v G
+ Rugscr 169" 09G" +ied PP
Comparing eq.(3.40) to eq.(3.10), we can see that there is only one new term. So

taking the time integral of the variation of the Lagrangian, the original terms still go

to zero while we have
2 / Ldt =i / igrb ¢’ dt. (3.41)

Now pulling the ¢ out front, we pick up a negative sign.
26 / Ldt = —i / ¢ (igI JEIQ'SJ) dt. (3.42)

From here we can see that the conserved quantity is the supercharge ) =
191 JEI(Z‘SJ . To get the other supercharge, the same process can be done for the €
part or simply take the complex conjugate of Q to get Qf = —ig; 1 ¢’ .
Also note that the Lagrangian is also invariant under the phase rotation of the
fermions
Yl — e_miﬂl,ﬂl — e”@l; (3.43)
where v is a constant. This can be easily shown by make the substitutions and noting
each term has both of the phase rotations reduce each other. The corresponding

Noether charge for the transformation is
—I
F =g . (3.44)
To show this, by the Noether procedure we take v to be time dependent. Doing
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this will only affect the terms containing time derivatives. So looking at the covariant

time derivative terms under this transformation
i i'y_I —iy, 0, i'y_I —iy, | i’y_I —iy,
S917 (€ ¢ Dy (e7y?) = Dy (e (0 ——gJ Y 0 (e7y7)
+ TP T e - 0, (70 ) e ! —Thydrenylenyd], (3.45)
we can see that most of the phase rotations reduce each other immediately.
i i'y_I —iy, i'y_I —iy i'y_l —iy, 0, J
Sousled' Dy (07 = Dy () ) = Sgug [0 ()
FPTIp00" = 0, (e79) e — Thydg | (3.46)
Then evaluating the time derivatives, we get

%gIJ[eiWEIDt (e7”) — Dy <€WEI) e Ml] = %QIJ [—We”@le‘”z/f’
+ €70 e 0T + P TLeo00 — ey ey (3.47)
—e”aﬂle‘”w" - Fiﬁcﬁ% w‘]] ~
Now reducing the remaining phase rotations yields
%ng[ei”ElDt (e7?) — Dy <6”EI) e l] = %QIJ [—i"YEI@DJ
0 0 + DT — g — 0w — Tl Ty (3.48)
Here we can rewrite this in terms of covariant time derivatives as
1 vl iy T\ iy I g
591][6 U Dy (e w)—Dt(e ¢) ¢]——91J[2W¢¢
5 D’ — D (3.49)
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Separating the 7 terms out gives us

G0 (7))

+ sou [7' D’ ~ D). (350)

So under this transformation, we have

1 e 1 —I —I
L+0L =39150'6” + Sg1s (' D’ — D)
1 ol kol g
+ ERIJKLd) YR+ g 7 (3.51)
This means that
5 / Ldt = / Y ) dt (3.52)

and the corresponding Noether charge is F' = g; JEIW .
3.2 Special Case: S?

For example working on S?, the metric tensor and inverse are

r? 0 =z 0
o r
g1y = g’ = , (3.53)
0 7r2sin?¢! 0

where {r, ¢!, $?} are {r, 0, ¢} from spherical coordinates respectively. Using the defi-

nition for the connection coefficients, the nonzero connections for S? are

I}, = —sin ¢ cos ¢! (3.54)
2, = I2, = cot o' (3.55)
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Here we define the covariant derivatives as

D! = o’ + T 0F (3.56)

Dy’ = p! + T4 7. (3.57)
Using the definition for the Riemann curvature tensor
Rrskr = g Rk = giur [8KP§/IL — O + TN — P%VPJ}TK} (3.58)

the nonzero components of the tensor are

0 r?sin? ¢!
Riokr = —Raixr = . (3.59)
—r2?sin? ¢! 0
Now using
1 .. i —I —I 1 —J  —L
L= 59188 + 5015 (¥ Do’ = D" ) + 5 Rusicrw 0050 (3.60)

as our Lagrangian on S?, expanding everything out gives us

L :%ﬂ [(q’ﬁl)z + sin? ¢! (&)2} (3.61)
+ %72 [ﬂl (Otwl — sin ¢! cos ¢1q52¢2) — (8,@1 — sin ¢! cos ¢1¢2E2) 1/)1]
2sin? (6) 1T

Note that due to the symmetry of the last two components of the Riemann curvature
tensor and the antisymmetry of the the fermionic variables, Ri510 = 0 = Ra19;. Now

for convenience, we can take all of the common factors from the right hand side to
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the left.

i—f = ((ﬁl)2 + sin? ¢ ((bz)g (3.62)
+i [El (&wl — sin ¢! cos ¢1q32¢2) — (8@1 — sin ¢! cos ¢1gz'52E2) 1/11]
— 2sin? (¢!) 019 .

Due to the symmetries the Riemann curvature tensor, the last two terms can be

combined together.
L . .
i—z = <¢1)2 + sin? ¢! (¢2)2 (3.63)
+1 [@1 (@wl — sin ¢! cos ¢1gb2zp2) — (&ﬂl — sin ¢! cos gblgz.SQ@Q) wl]
— 2sin? (") w19 V7Y
Now distributing the sin® ¢', we can regroup the terms as
L . .
(o) e o)
+1 [El (8t¢1 — sin ¢! cos ¢1q52¢2) — (81@1 — sin ¢! cos ¢1$2E2) P!
+ EQ (sin2 $'9% + sin @' cos ¢l Pl h? + sin @' cos ¢1<;52¢1> (3.64)
— (sin2 ¢18ta2 + sin ¢’ cos ¢1q51$2 + sin ¢ cos ¢1¢2E1) wz]
— 2sin? (¢) ¥ Y

Here combining like terms gives us

i—f - (¢1)2 + sin? ¢! (q$2)2 (3.65)
i [0 — 00" + 0 (sin? 61 0u? + 25in o' cos 916 )
= (sin2 ¢1a@2 + 2sin ¢' cos ¢1q.52@1) wﬂ — 25sin? (gbl) wlﬁzz/ﬁil.
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Now using the trigonometric identity 2sin ¢! cos ¢! = sin (2¢'), we have

20, [ 2 .91 ( 9 2

= ((b ) +sin? o (¢ ) (3.66)
+i [P0t - 0B vt + 9 (sin? 61 90? + sin (201) 62
— (sin? @' 00" + sin (20") 620" ) 02| - 2sin® (o) ¥ 002",

Then grouping the imaginary terms by their leading trigonometric functions, we have

2 =(3) e () (3.67)
4 [Elaﬂ/fl B &:Ellﬂl +sin (261) e (@21/)1 B 51@/}2)
sin? ! (B 02 - 000 )| - 25 (01) 01 07

Now taking the variation of the Lagrangian gives us

Qf—f — 2$'6¢" + sin (2¢) (&2)2 56" + 2sin® @1 ¢260°% + i [Wlatwl + 0 950"
— 000 Y — P 59" + 2cos (26") 66 B2 @2@&1 - Elq,z;?) (3.68)
+ sin (2¢") (50}271#1 + G20 YL + PR OY — 867 ? — §R6Y cﬁ%lfW)
+sin (201 5¢" @Qatw — 8@%2)
+sin? ¢! (wzatzp? + 0,002 — 000 Y — a@zw)] .

Using integration by parts on the underlined terms, we can combine like terms to

simplify

Qf—f = —2'66" + sin (2¢") (q§2)2 56! — 0, (2 sin? ¢1q's2) 5¢° +¢[25E16t¢1 (3.69)
— 20,0 60" + 2cos (201) 60! 6* (B0 — 9'0?) — 00%, [sin (26") (¥°0' ')
+sin (20") [§200°0! + 00! — 9200 0 — 6700 + d6' (V0w — 0"

+sin? ¢! (95700 — 00°00%) — 0, (sin @07 ) 60* + 600, (sin® ¢'0?) |.
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Using the supersymmetry relations

09 = ey — 7yt

00 = ey’ — ey

St = e (z'gél + sin ¢ cos ¢%2¢2)

S0? = e (w’? — cot ¢ 92 — cot ¢1E2¢1) (3.70)

00" =€ (=i +sin g cos '3 70?)
(

—32

50" = (—id? — cot o' % — cot qs%%)

gives us

2= (—2951 +sin (21) («;'62)2) (@' —ev') — o (2502 0 ) (07— ?)

i |22 (—id! + sin o cos 6" 570?) O’ — 205" e (16! + sin 9" cos '5"?)

+ 2005 (26") (0 — ') 6 (970!~ ¥'v?)

(o) (P -7

+sin (26') 0% (—id? - cot "B u?) !+ $07e (i61) - % (~id") v?
~70 e (107 — cot o' B0t ) + (0! —et) (P - 0570?)| (3.7)

+ sin? ¢! [z (—W — cot ¢\ P — cot ¢1E2¢1) O
—0’e (i — cot 6" Y? — cot 00" )|

— 0, (sin? 0'57) € (i6? — cot 69" ? — cot 69"y )

e (—ig? — cot 68 — cot 6 ) 0, (sin? 9'07)]

Next separating all of the terms by ¢ and € will help us with the mathematical

bookkeeping.
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2;5—2L =€ { (iqﬁl + sin (2¢1) (¢2)2> El — 0 (2 sin? gbl(bQ) JQ

+i 200" (i +sin 6" cos ¢'0°0?) + 2cos (261) ' G20
=~ 0%, [sin (20") (V0! = 0'0?)] +sin (201) [-id1 675"
170" (i = cot 91070 ) + 6 (P00 - 00°v?)]
+sin? 6180 (m’s? — cot ¢\ Y2 — cot ¢1E2¢1)
+o, (sin2 ¢1E2) (w}? — cot ¢ — cot ¢1E2¢1)]
~2isin? ! ($'0° v + #0570 ) | (3.72)
te { (2;«'51 —sin (24) (ég)z) v+ 0 (2sin? 0167 ) v
+i [2 (1& + sin ¢! cos ¢1E2¢2) O + 2 cos (201) 1620 2
+ %0, [sin (20") (¥t ') |
+sin (20') [ 62 (—id? — cot o' v?) w! +id'd*? — vt (F 0w - 0007
+ sin? ¢! (—iq52 — cot ¢\ Y2 — cot ¢1E2¢1) O
+ (—z’q’? — cot ¢\ — cot ¢1E2¢1) 9, (sin® ¢1¢2)]
aisint ! (0T + )}
By noting that the underlined terms are a total time derivative, they can be dropped

from the Lagrangian without affecting the variation of the action. Also using the

trigonometric identity sin (2¢') = 2sin ¢'cos¢’, we have
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27(~5_2L = {Sin (2¢") (‘?52)2 D) (2 sin ¢1€i’2) v i [Sin (26") 0 " y?

+ 2008 (20) ' 700! — 70, [sin (26") (V4" - 0"
+sin (20') [~id'907 + 6% (id — cot o Pp!) + 9 ('0? - 057 0?)|
+ sin? 6180 (i¢2 — cot p1 % — cot ¢1E2¢1)
) (sin2 qs%z) (igﬁ? — cot ¢'P % — cot ¢%2¢1)]
~2isin? @' (6'0°00 + ¢ ) |
te {— sin (26') (@2)2 D!+ 8, (2 sin? ¢1¢2) WP 4 [sin (26") T2t (3.73)

+2c0s (260") W' v + 420, [sin (20") (370! - ')

+sin (20') [ 62 (=id? — cot 60" v?) 0! +id'¢*? — vt ($ow? - 00°?) |
+ sin? ¢! (—wz — cot 619 P — cot ¢%2¢1) A

— (i + cot "5 v + cot 9157w ) 9, (sin? ¢'0?) |

—2isin® o' (20w + @10 |

Above the underlined terms cancel each other

39

www.manharaa.com




2;5—2’3 —¢ {—at (2 sin ¢1¢%2) O+ [sin (26") 01 G )2

+2c0s (20) 0 00! — 00, [sin (26") (0! - 0"
+sin (20') [~id' 6% — 0 ot "B + B (F 0w - 05 0?)|
+sin? 6100 (162 — cot 915" — cot ¢!
0, (sin? 010" ) (162 — cot 95 v? — cot 6"y ) |
—~2isin? ¢' (67000 + ¢ ) |
te {at (2 sin? ¢1¢2) MR [Sin (26") B 20" (3.74)

205 (260") W' R 4+ 120, [sin (20") (B! - 0'e?))]
+sin (20') |67 cot 60 V2! + 122 — w! (V00 — 00°v?))|
+ sin? ¢! (lb? — cot ¢\ 2 — cot ¢1E2¢1) 12
+ (=id? = cot 91912 — cot 619y ) 0, (sin 61|
—2isin? o' (200 + @10 |
By using integration by parts on the +i¢? terms to isolate ¢, we can cancel it with

one of partial time derivatives
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2;5—2L =€ {—Bt (sin2 ¢1¢2> 52 +1 [sin (2¢1) 8tE1E2¢2

+ 2005 (201) ' 6700 — 0, [sin (20") (P70 - 07|
+sin (20') [=id! 67 - 670" cot 00w + B (V007 — 00" v?))|
— sin? o cot 10, (9197 + ")
+0, (sin2 ¢%2) (@ — cot ¢' 0% — cot ¢1E2¢1)}
—~2isin? ¢' (67000 + ¢ ) |
te {at (2 sin? ¢>1¢2) N [sin (26") B 20" (3.75)

205 (260") W' R 4+ 120, [sin (20") (B! - 0'e?))]

+sin (20') |67 cot 60 V2! + 122 — w! (V00 — 00°v?))|
+ sin? ¢! (lb? — cot ¢\ 2 — cot ¢1E2¢1) 12

+ (=id? = cot 91912 — cot 619y ) 0, (sin 61|

—2isin? o' (200 + @10 |

Again using integration by parts on the 4i¢? terms will cancel with the remaining

underlined terms above
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2;5—2L = i€ {sin (2(;51) 5’1@1@21#2 + 2 cos (2¢1) %ﬁ?@%l

0, [sin (26") (Fu' = 0'?)]
+sin (201) [~9%0 cot 900! + 7' (V0w — 05" |
—sin? @' cot 6" 90" (4142 + 0°01) — cot 910, (sin? 6'67) (9'0? + 00
~2sin? 9! (1070 + $0'50) |

+ie {sin (26") T*¢20,0" + 2 cos (201) 625 v (3.76)
+ 020, [sin (20') (F°0' - ')
+sin (26") |~¢ oot 00" v%! — vt (VO - 00" |
—sin? ' cot 9 (0102 + 0! D — cot @' (9107 + B0') O, (sin® 6'?)
—2sin? ¢! (0070 + @10 ) |

Noting the ¢? terms, we can use trigonometric identities and some rearranging of the

fermionic variables
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2L — i {sin (20) 00T + 2 (cos? " — sin ) U !

~ 00, [sin (20") (P! - 0'0?)| - 2008670 P!

+sin (261) 6 (§02 — 00" 4?) — sin® @' cot 6100 (F'0* + 50"

—cot 910, (sin? o'5°) (10 + 070" ) — 2sin? ¢! ($07 ' — #0107 ) |
tie {sin (26") D420, + 2 (cos? ¢! — sin? ¢1) 2% (3.77)

+ 020, [sin (20") (P! = 007 | - 2008 6! 67010

—sin (20") 0 (@°00° — 90°y?) —sin’ ¢’ cot o (902 + 90" ) O”

—cotg! (U142 + 070" 0, (sin? 9'0?) — 2sin @' (Y7 + G1NETw?) |

so that they can cancel each other.

Zf—QL — je {sm (26") 05 0 0* — 570, [sin (26" (@%1 - wz)]

+sin (2601) 6 (502 — 90" 6?) — sin? ¢ cot 6103 (B0 + 570"
—cot ¢'0, (sin 65" ) (U107 + 0'0!) — 2sin” 0191074 |
+ie {sin (20") T 200" + %0, [Sin (26") (E%pl — Eﬂp?)} (3.78)

— sin (2¢1) P! (EQ&MQ — (9,@21#2) — sin? ¢! cot ¢! (Elzf + E2¢1) Op)?
—cotg! (602 +0°01) 0, (sin? ¢0?) — 2sin? 9191y "2

Then using integration by parts on the underlined terms gives us
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2;5—2L = j¢ {Sin (2(;51) 8tala2¢2 + 815E2 [Sin (2¢1> (Ele N M)}

+sin (261) 9" @zatW - M) _ sin? 6" cot ¢ 0,5 (@W n Wl)
—cot ', (sin? 00" ) (9102 + P70 ) — 2sin? 01910 v )

e {sin (261) V200" - ? [sin (26") (870"~ 0'e?))] (3.79)
— sin (2¢") ! (M — a@%?) — sin? ¢! cot ¢! @1@02 + E%l) ,0°
—cot ¢ (V02 + Y1) 0, (sin? 6'0?) — 2sin? 616 P 02}

Then the underlined terms cancel each other giving us

Qf—f — e {sin (20") 0,0 DY + sin (26") O % "
+sin (201) 00 00? — sin® ¢ cot 610, (El@zﬂ + E%l)
—cot ¢'0, (sin¢'%") (0107 + ') - 2sin? ¢1¢1$2w2$}
tie {sin (26") P 200" + sin (261) D20 2 (3.80)

+sin (261) 610"V — sin? @' cot 6" (64 + 570" Dy
—cotg! (802 + P'Y1) 9, (sin® 9'0?) — 2sin? 9191y 0 w2

Evaluating the time derivatives gives us
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2;5—2L = ie {sm (2") 00 070 + sin (201) 9 ¢ !

+sin (261) T 0® — 25in® o cot ¢'09° (' + 570
—cot¢' sin (261) S0 2 — 250’ 910 00 )
tie {sin (26") D¢20,0" + sin (261) 9,20 v (3.81)
+sin (20) 0105 ¥ — 2sin? ¢! cot ¢! @1@&2 + EQW) 0,1°
— cot gl sin (261) $ YR - 2sin? 9191 P72}

Using trigonometric identities here simplify the underlined terms to get

DL —ic{sin (20") 95T + sin (26") 9T T "

+sin (201) 91070 — sin (261) 00 (9'9? + 90
— cot ¢ sin (20') $1P7P 2 — 2sin? ¢1¢3%2¢2E1}
e {sin (261) Y2 0" +sin (20') 90y (3.82)
+sin (201) $'0,0°¢? — sin (261) (M + E%l) D?
—cot ¢! sin (26") $ Y YR - 2sin? 9191 Y2

Here the underlined terms cancel each other to get

20 = e {sin (20) 00 T + sin (201) TT 07 — sin (261) 00T 0

7'2
—cot ¢ sin (2(/51) ¢1E2E1¢2 — 2gin? qﬁl(ﬁlEQwZJl}
e {sin (26") V20" +sin (261) $1O0°G? — sin (20') G019 (3.83)
—cot ¢" sin (201) 1P P — 2sin’ ¢1¢31¢1E2¢2} .

Simplifying the underlined terms using trigonometric identities gives us
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L _ ie{sin (26) 0050 + sin (20') 85 00 sin (261) 900"

—2 cos? ¢1gﬁlﬂ2$¢2 — 2sin® ¢1¢1E2¢2@1}
1 e {sin (20") P 20" + sin (201) V'O Y — sin (261) PP 9°  (3.84)
~2c0s ¢ @Y Y — 2sin? 6161 Py |
Here we can rearrange the fermionic variables to get

2;5—2L — e {sin (20") " 09?4 sin (201) ' 9 O

+ sin (2¢>1) E18t$21/12 + 2 (cos2 o' — sin? qﬁl)(blElEZwQ}
+ e {sin (201) B0 + sin (201) 410,002 (3.85)
+ sin (2¢1) ¢1E28t¢2 + 2(0082 o' — sin? ¢1)qf>1¢11_02¢2} )

Using the double angle cosine trigonometric identity on the underlined terms, we get

2;5—2L —i {sin (20") 0 "2 + sin (26") ' "0

+sin (2¢1) @10@%2 + 2 cos (2¢1) q.§1@1@2¢2}
e {sin (26") 007U + sin (261) 600" (3.86)
+ sin (ngl) @/11@231:@/12 + 2 cos (2q51) ¢51¢1E2¢2} )

Here we can note that

O [sin (20") P02 = 2c08 (20') 90TV +sin (20) 00T (387)
+sin (261) ' 0% + sin (201) 6 0,

O [sin (20") 0| = 2c08 (20) 9"V Y +sin (20) 1T (3.89)
+sin (261) 19 ) + sin (201) 1P 9%,
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Since these are total time derivatives, we have that
55 = 6 / Lt =0, (3.89)
Following from eq.(3.43), the supercharges are

Q = ir? (Elgil + sin? ¢1E2q52) (3.90)
Qf = —ir? (¢1¢1 + sin? ¢1¢2q52) , (3.91)

while from eq.(3.45), the Noether charge is
2 (711 a2 41722
F=r (¢¢ +sm¢1/11/)>. (3.92)

To check this, we take the fully expanded variation of the Lagrangian as
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2;5—2[/ =€ { (i(bl + sin (2(;51) (¢2>2) El — 0 (2 sin® ¢1<ﬁ2> EQ

+i [26@1 (@ + sin ¢! cos qs%zz/ﬂ) +2cos (201) ' 6% !
0’0, [sin (20") (@°0' — B'¢?)]
T sin (201) [~ 670 + 670" (167 — cot 0 0"w! ) + 0 (V0w - 00°?) |
+sin 18,0 (z‘gb? — cot ¢' 0% — cot ¢%2¢1)
+0, (sin2 ¢1E2) (w’s? — cot ¢' % — cot qs%%l)]
~2isin® o' ($'0° ' + ¢y ) |
+ z{ (2;;51 — sin (2¢") (q52)2) o+ 8, (2 sin’ qslq's?) »? (3.93)
+i [2 (lqbl + sin ¢ cos ¢1E21/}2) Ot + 2 cos (261) 620 2
+ %0, [sin (20") (V0! —¥'v?))]
+sin (261) 67 (—id? = cot 60"0?) 0! + i e — vt (Va0 - 00" |
+sin® ¢! (—m’s? — cot ¢\ P — cot ¢%2¢1) O
v (—w2 — cot 1% 92 — cot ¢1E2¢1) 9, (sin? ¢1¢2)]
pisiat o8 (0T + 0T

By noting that the underlined terms are part total time derivative, we can say
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2;5—2]3 — 210 + e {sin (26") (q's?)zal — 8, (2 sin? ¢1¢'52) s

i [26@1 sin @' cos ¢ Y2 + 2 cos (26") ' 7P !
— 0%, [sin (26") (90" = 0'v?)
+sin (201) [~ 670 + 670" (id? — cot 0 0"wt) + 0 (P 0w? - 00°?) |
+sin 18,0 (z‘gb? — cot ¢' 0% — cot ¢%2¢1)
0, (sin? 00 ) (6?2 — cot 69" v? — cot 6"y ) |
~2isin® o' ($'0° ' + ¢y ) |
T {—sin (26" (q52) Lo+ o, (2 sin’ ¢1¢’>2> 02 (3.94)

+i [2 sin ¢! cos ' 97?0 + 2 cos (26") ' 620 v

+ %0, [sin (20") (V0! ')

+sin (20') 67 (—id? — cot 60"v?) 0! + i 0 — vt (Vo - 00" |
+sin® ¢! (—m’s? — cot ¢\ P — cot ¢%2¢1) O

+ (—w2 — cot ¢\ — cot ¢1E2¢1) 9, (sin? ¢1¢2)]

it (07T < P0)).

Here the underlined terms cancel each other. Also using the double angle Sine identity,

we have
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Qf—f = 29"+ {—at (2 sin’ ¢1¢2) ¢

+i [sin (26") 00 02 + 2cos (20 T 70!
0’0, [sin (20") (2°0' = 0'¢?)]
+sin (201) [~ 670" - cot 91970 00w + B (BP0 — 0"
+sin 618,00 (@ — cot ¢' % — cot ¢%2¢1)
0, (sin? 00 ) (62 — cot 69" v? — cot 6"y )|
~2isin® o' (§'9°u + ¢ ) |
— 2Ep + 7 {at (2 sin? ¢1q'52) 0? (3.95)

i [sin (20") D U001 + 2005 (201) 11 620 4

+ %0, [sin (20") (V0! = ¥'v?))]

+sin (26") [~ cot 6670 v + 162 — p! (B0 - 5 0?)|
+sin? ¢! (—id? — cot 69 Y? — cot 'Yy ) ?

+ (—w? — cot ¢\ — cot ¢1E2¢1) 9, (sin? ¢1¢2)]

—2isin? ¢! (0w + @10 |

Then using integration by parts on the :l:z'q.§2 terms terms to isolate EQ, we get
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2;5—2[/ = 2é<b1@1 + ésin? ¢1¢2E2 +e€ {—& (sin2 ¢1¢2) Ez

+i [sin (26") 00 02 + 2cos (20 T 70!
0’0, [sin (20") (2°0' = 0'¢?)]
+sin (201) [~ 670 — cot 997 0w + B (BP0 — 0"
—sin2 0,0 (Cot 1% P + cot gb%ngl)
10, (sin? 00 ) (id? — cot 69" v? — cot 6"y )|
~2isin® o' (§'9°u + ¢ ) |
— %"t — €sin® ¢l d*Y? + € {at <sin2 ¢1¢52) V2 (3.96)

+i [sin (20") P*P20" + 2cos (201) 120 ¥

+ 920, [sin (201) (V0! = 5'¢?))]

+sin (20) [~ ot ' W + i 2 — v (0 — 007w |
—sin® ¢! <cot A % + cot ¢1E2¢1) B?

+ (=id? = cot ' ? — cot '3y ) 0 (sin® 91 |

—2isin? ¢! (0w + @10 |

Then using integration by parts again on the :I:i(ﬁ, we get
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25—2L = 241" + 2esin 9167 + € {z [sin (26") 00" G2
T

+2c08 (261) 96070 — 00, [sin (2") (970! — 0'9?) |
+sin (2¢") [—cot OGP+ Y (EQatz/ﬂ - 6@21/12)]
— sin2 ¢'0,0” (cot P Y2 + cot ¢1E2¢1)

9, (sm2 ¢%2) (cot ¢ P + cot ¢1E2¢1)}

—2isin? ¢! (é%%%l + 0P ) }

_ 2edlpt — %sin? 1P + {z [sin (26") P 420" (3.97)
+2c05 (261) Y1970 07 + 20, [sin (261) (70! - T'9?))]
+sin (201) [—cote! 60 vt — 9t (V0w - 00" |
_sin? ¢! (cot O % + cot ¢1E2¢1) B2
- (cot ¢ + cot gb%%l) 0, (sin? ¢>1¢2)]

2 gin? ¢! (M n q'slz/;%%?) } .

Here the underline terms cancel each other out as they did earlier.
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I L -
% = 24\P" + 2¢sin? 312
.

te {2 {sin (26) 00 G Y2 — %0, [sin (26") (?fzpl - Elqﬁ)]

+sin (20") 01 (800 - 00°0?) — sin? 6'9,8° (cot 60"V + cot 00" )
—0 <sin2 ¢1E2) (cot qﬁlﬂlz/ﬁ + cot ¢1E2¢1)] — 2isin® qﬁl(blEszEl}

— 2ed' ! — 2esin® ¢ PPy’ (3.98)

+7 {z {sm (20") P ua" + 020, [sin (20") (0°0" — WQ)]
— sin (20") y! (Jzat@zﬂ . a@zw) —sin? ¢! (cot S Y2 + cot qs%zzpl) 0,0°
— (cot @52 + cot 6 F1) 4 (sin® o'u?) | — 2isin? 0! 90}
Now using integration by parts on the underlined terms gives us

2;5—2L — 2P + 2ésin® §'FTY — iésin (201) PP

e {i [sin (26") 98 0w + 05" [sin (26") (V70" — ')
+sin (201) P (Ezatz/ﬂ - M) — sin? ¢'9,0” (Cot &' Y2 + cot cblEle)
0, (st 6'5°) (cot "2 + cot 60t ) | - 2isin? 010 075 )
— 2edlpt — 2esin? ¢ld*y? — iesin (26) Y2y (3.99)
e {i [sin (20") P w200 - 0? [sin (26") (80" - 502
—sin (20) 0! ($°0w? — 09°0?) — sin? o' (cot P42 + cot 91570 ) 902
_ (cot S 02 + cot ¢1E2¢1) d, (sin? ¢1¢2)] — i sin? ¢1¢s1¢%2¢2} .

Now using integration by parts on the underlined terms gives us
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Q;S—ZL — 2P + 2¢sin? ' ¢7P — e sin (26)) PP 2

e {i [sin (201) 05 0°02 + 00" sin (261) BV + sin (261) 9167002
—sin2 $10,9° (Cot ' Y2 + cot gz%%l)
~0; (sin? 00 ) (cot 69" 42 + cot ¢1E2¢1)] — 2isin? ¢1¢1E2¢2EI}
— 2e¢' ! — 2€sin? ¢ o*p? — desin (2¢) ey (3.100)
e {i [sin (261) V200" + % sin (261) 9102 + sin (20) ¥10,0°y?
— sin? ¢! (cot A % + cot qs%%/ﬂ) B,°
_ (cot S0 + cot ¢1E2¢1) d, (sin? ¢1¢2)] — i sin? ¢1q51¢1$2¢2} .
Expanding the derivatives here allows us to say

25—2L — 21 + 2¢sin? ' ¢7P — iesin (261) PP 2

e {i [sin (201) 08 002 + 087 sin (261) 90! + sin (20) $ P 92
—2sin2 10,0 (cot O % + cot ¢1E2¢1) — sin (2¢") cot ¢1¢1$$¢2]
~2isin® 9191577 |

— 2e¢' ! — 2€sin? ¢ o*p? — desin (2¢) ey (3.101)

e {i [sin (267) V200" + 2 sin (261) 9102 + sin (20) ¥10,0°y?
~2sin? @' (cot 6B U + cot 6 ) 9 — sin (20) cot 6! 90 v 2|
—2isin® 9191y P"y?}

Using the double angle sine identity, we get
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Qf—f — 24\ + 2ésin® ¢LG7Y” — iésin (26) PP ¢

+ e {isin (20") [0 + 0BD°Y! + U002
—0" P = 0 T - cot ¢! D R — 2isin 910157 |
— 2edlp! — 2esin® ¢ldy? — iesin (201) 2P Y (3.102)
+e{isin (201) [P 0200 + 00002 + 0105 02
—P' PO — PV O - cot 61 VIR — 2isin? 991U}
This allows s to simplify the equation, to get

2;5—2L — 2P + 2esin® 6L FFG — iésin (201) P

+e {z sin (2¢1) [@E1E21ﬁ2 + @1E23ﬂ/}2 . 8@2%#2 — cot ¢1<Z.51E2E1¢2]

~2isin® 91915707 |
— 26"y — 2€sin? ¢l ¢*p? — iEsin (2¢) ey (3.103)
e{isin (26") [F70200" + 010870 — TV'00? — cot 619 0 v 12|
—2isin® 9191919 y?}

Here we can rearrange this to get
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Qf—f — 21 + 2¢sin ¢'¢7Y” +iesin (201) PP Y

+ie [sin (20) (08 002 + P00 + V00" ?)

+2 (cos? 0" — sin? ¢') 695702

— %'t — 2esin® ¢l d*y? + iésin (201) 1P (3.104)
+ie [sm (26" (atw%%/ﬂ o + w%aﬁ)

+2 (cos? ¢! — sin2 ¢') ¢'>1¢1E2¢2] .

Using the cos (2¢') = cos? ¢! — sin? ¢', we have

2;5_2L = Qé(élal + 2¢ sin? ¢1q'52$2 4 iésin (2¢1) $1E2¢2

e [sin (201) (00002 + 0000 + 01057 ?) + 2cos (201) 605702
—2ed' ! — 2esin? ¢! $*)? + iesin (201) PV (3.105)
e [sin (20) (001062 + 00T VP + 01T 0R) + 2c0s (261) VY2

Noting that the everything other than the two underlined terms are part of a total

time derivative, we have that
5L = ér? (q’b%l + sin? ¢1¢2E2> o (¢1¢1 + sin? ¢1¢2¢2) . (3.106)
Now integrating everything over time and pulling out an —1,

SLdt — —i / {éir2 (é%l + sin? ¢1¢'s%2) i (q'slwl + sin? ¢1<;32¢2) } dt, (3.107)
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we have that

O = ir? (é%l + gin? qslq%Q) (3.108)
Of = —ir? (gﬁwl + sin? ¢1¢'>2¢2> (3.109)

which is exactly what we calculated before.
Now to check the Noether charge F', we can look at Lagrangian from eq.(3.68)

under time-dependant phase rotation of the fermions.

2(L +4L)

r2

_ (&1)2 + sin? ¢! (d)2)2 T [emglat (e—wwl) _ 9, (emal) el
+sin (20) 62 (V0! = P'u?) +sin ¢! (7670, (70 (3.110)
—9, (ei’YEZ) e—mw)] — 2sin? () ¢1E2¢2EI~

Evaluating the derivatives gives us

2(L +0L) _ (¢1)2+sm2 4 (¢2)2 (3.111)

r2

i [ Y+ DOt — P — 0 ! +sin (261) ¢ (V00! - B'?)
+sin? ¢! (—wﬁw? PO — A 2 — aﬁw?)]
— 2sin? (¢') 'Y Y

Now combining like terms gives us

AELD (&) st ot (#)"+i [2n0'et 4 Towt 03’y (3112)

+sin (2¢) &2 @%1 - Elw) + sin? ¢! (-2@@%2 PO — &Wdﬂ)}
— 25in? (¢) 91 Y.

r2
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Since this only adds two terms to the Lagrangian we have that
5L = 412 (%,bl + sin? ¢1E2¢2) . (3.113)
So take an integral over time
SLdt = / 42 (@17,111 + sin? ¢1$¢2) dt (3.114)
means that
F= (Elgbl + sin? ¢1EZ¢2> , (3.115)
which matches the earlier calculation.
3.3 Superfield Formalism

Under the Superfield formalism in 1D, the SUSY Lagrangian can be derived
using

1 _
Lsysy = §gIJ(CI))DCI)IDCI)Jv (3.116)

where ® is a superfield, D and D are operators defined as

D = 0y — 60, (3.117)
D = —05+ 00, (3.118)

where
0500 = —0. (3.119)

Here 6 and 6 are fermionic variables that augment physical space and are orthogonal

to the 1D space. For our purposes, we take the i*" component of the superfield ® to
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be

o =l 1oyl + 09 +iF!, (3.120)
where F! is a bosonic function representing an auxiliary field to be determined later.
The initial ordering of the § and 6 does not matter as long as we stick to the ordering

through out the derivation.

Now using the operators on a component of the superfield, we get

Dol =9 —i0F! + 04" + 000, (3.121)

D® = —¢p) —i0F7 —i0d’ + i000,” . (3.122)
Then multiplying them together yields

D' DY = — ' y! — 09 F +i00’ 7 + 000 9,07
—i0F" — 00F F! — 00F 7 — 01’ (3.123)

L O8BFY + 0067 — 1000, 0.
Now taking gr;(P) as an expansion to be

g[J(CI)) =grs+ 9(9%(]”7#7 + 5879”? + 95 (i@wguF” - (%8,55]1‘]1#”@5) y (3124)

and keeping only the 06 terms, the Lagrangian becomes

2L = — 10,91, F VEIW] + 873591J¢755E1¢J - iangJM@IF J
480, g1 &7 + igrsb O + 0,910 Flp — g FTF? (3.125)

. . . . . . . _I
— g P’ + zf%gu?&/f’ + 910" F7 + grs0" 97 —igrs00 .
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Assuming that g;; is symmetric, the two underlined terms cancel each other.

2L = — 10,91, F VEIW] + Byaaguw@%%" - i@vgugﬁg_bIF ’
410, g1 &7 + igrsb O + 0,910 Flp — g FTF! (3.126)

+ iayQIJF¢I¢J + g1y’ — igIJatEI?/)J-

Now to find F'*, we take the variation of Lagrangian with respect to the bosonic

functions F'* and set it equal to zero.
—i0,910 Y SFY — 0,9 0070 SF7 + i0,g; 70 W' SF! — 29, FISF) =0 (3.127)
Here rearranging the indices on the first three terms gives us
291, F'6F = —i0;g1. 35 46F7 — i01g, 0" 0 SF + 0, gr 0 WISFY . (3.128)
or more simply as
291, F" = —z’&;gfﬂlw — iazgwﬁ’W + i&ygqu’- (3.129)

Now swapping the order of the fermionic variables in the second term yields a negative
sign

. —I . .
291 F! = —id;g1,0 7 + 1019, 50 0" + 0,910 ). (3.130)

Then noting again that the metric tensor is symmetric in the first te, we can say that

11
gIJFI =1 B (_anI'y + 0rgyg + 37911) W¢I~ (3.131)

Here we can note that inside the bracket is a Christoffel symbol of the first kind.
g1 =il " (3.132)

Finally we can multiply both sides of the equation with ¢’ to get a Christoffel symbol
60

www.manharaa.com




of the second kind.
= zI‘O‘ﬂ/} w (3.133)

After finding F'“, we can use this inside the Lagrangian to get
—I—a
2L =01, T 0 "7 "W 4 0,0591078 0 + 0,91 PRI
+ iangJ¢7E ¢’ + Z'gIJE op” — ygul“éﬁa@ad)ﬁzp‘] (3.134)

+ gDl WP 00 + 0,107 9" + 910" — igrs00" 0.

Now looking more closely at the underlined terms, we can swap the order of the

fermionic variables in the last two terms to have the same form as the first to get

g1 T B + 0,1, T B B — 0,91 T8 0 Py (3.135)

= ngFaﬁ@/J Q/Jﬁlﬁ T/JJ g1l 5@/1 1/}ﬂ¢ YT — 'ygIJF 51/) @DBFZ/)J

Similarly, we can relabel the indices in the last two terms to have the same fo as the

first to get

0,91 T2 0" W W + 8,1, T L 0 0P — O,gr T 0 0 WPy (3.136)

= —(=0y915 + 0191y + 019y1) PZ@“W@W-

From here we can see in the parenthesis that there are two Christoffel symbols of the

first kind.

0,110 0 W0 W 4 0,91, T 0 DM — 8,1 T P Py (3.137)

= —QFIJWFL;EQ@ME 7.
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Now using I'7, = g4m [Ty, we can say that
—a ,g—1 —I[—« —a
3791JFZ5¢ ¢B¢ ¢J + avglJPi5¢7¢ (0 wﬁ - 6’791JF£/3W¢ W%J (3.138)
m —a —I
= _zgmeUFZégw W}w ¢J~
Using this, the Lagrangian becomes
—a —5—1 . —I .=
2L =- 291JP£5F ig¢ I 4 Oy 0sgrs 0" T +i0y g0 ¢ + igrs O’
— . . . . . _I
+ 91 oDt V70 0 + 00,9150 ' + 9150' 07 — igrs0 . (3.139)
For simplicity, we can rewrite this as
[ . —I - —7I . —I
2L =g1s9' 9" +i (0,91670" 6" + 91,8 O’ + 0,910 6" — 91,0y
—5—1 —a
+ 80,0591 0" 0 7 — graTaglyst o9y’ (3.140)

Now using integration by parts on the imaginary portion of the Lagrangian for the

underlined terms we get

—QIJatEIwJ = éhgué@lw’ + gIJEIat@[}J (3.141)
910" 0 = 0,91, — 91,0807 (3.142)

Now for each of these equations, we can break up the first term into two pieces and

rearrange the indices to get

— 1 R 1 . .
—gIJatlflIW =5 ngWlbI?/)J - §3IQWJ¢I¢J? + gLﬂ/)Iat@/)J (3.143)
— 1 R 1 R _
9170 0 = =50,91, 070 = 0,90, 00 W — 9O W (3.144)
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Then adding these two equations together gives us

—I —TI 1 P —I 1 =T —I
9110 0" = gr,00p 7 = —3 L1 7+ gr o’ — éawguwiﬂ]w — 91,00 Y’
(3.145)
Similarly, we can break up the non-underlined terms of the imaginary portion of the

Lagrangian into two pieces and rearrange the indices to get

91070 ¢ = —% Lgrs 8" Y + %8J917¢’¢JW (3.146)
0,910 "7 = —% L9107 + %ajghé@‘]w. (3.147)

Now adding up these last three equations gives us

8yguw@1¢3‘] + gIJEIat@Z}J + aygIJJ%IW — gIJatEId}J

1 - — 1 L _
= 20,9100 7 + grsd o — 5091 2T — g0y (3.148)

2
1 r—J 1 . 1 . 1 —
= 50,9159 0 + 505918 WTYT = 50391500 + S 091,667

Then grouping the underlined terms and the non-underlined terms together, we can

say that
_ 1 . 1 . 1 .
— 110 7 — 53791J¢7¢I¢J + §3J917¢I¢JW 3 L9107 (3.149)
_ 1 .
= —guaﬂ/)llb‘] + {5 (019~s + 0y91y — vgu)] RSV
—1, ;5 1 e 1 7y 1 7y
arp Opp” — 53791J¢ v — 56791J¢ YT+ §3J917¢ (DU (3.150)

_ 1 R
= 91J¢Iat¢J - [5 (319J7 - avgu + 3J917)] ¢I¢J¢7-
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Now inside the brackets, we have Christoffel symbols of the first kind.

_ 1 R 1 . 1 .
— 1,0 7 — §3WQIJ¢WI¢J + §3J917¢I¢JW ~3 NS T (3.151)
= —gljat@I@/JJ + FIJVQBI@Z}JW
—1, . 1 ol 1 o S 7y
grr O — 53791J¢ P — §a~ygu¢ PP+ §3J917¢ P (3.152)
= QIJEI@WI + FIJ%#EJQW-

Now using I'77, = g4m['7;, we can say that

—QIJ&:EIT#J - %&YQIJ(&YEI@&J + %afghqlﬁlw‘jw — %mgucﬁlew (3153)
= —91J (@@I + Fiﬁq.ﬁa@ﬁ) Y’
gIJJIatW] - %f%gudb”w%‘] - %%QIJQBIaJTW + %ajg]»yéIEJ’lﬁ’y (3.154)
= gIJEI (@W’ + Fiﬁéo‘@bﬁ) .

By noting the the terms inside the parenthesis are covariant time derivatives Dy, we

get

_ 1 . 1 . 1 . _
~91500" 07 = 20910670 ¥ + 50590, 0T = 50,9100" 078 = g1, DY
(3.155)

— 1 . _ 1 R 1 R _
g1yl 0’ — 0,91,V — 20,9107V + 0,591,807 = grs0 D
2 2 2

(3.156)
This makes the imaginary portion of the Lagrangian becomes
avguw@%" + 9100 0 + 0,910 "7 — 9100 (3.157)
= —QIJD@I’QZJJ + QIJ@IDt@/)J-
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By integration by parts, we have
) R _Ia J49 Y I J 8_1 J
L9 Y 7+ gr O + Oygrs oY — grsonp P (3.158)
—I —I
= gDy 7 — g0 Dy
Therefore the Lagrangian becomes
I . —I —I
2L =gr;0"¢7 +i (QIJDt%b ! — grip th‘]) (3.159)
—5—1 —a
+ 0,051, 0" T — graTh T 0" o 0

Now for the terms with second derivative of the metric tensor, we can it up into two

terms and rearrange the indices to get
I . —I —I
2L =g1;¢"¢7 +i (QIJth 7 — g0 Dti/)‘]) (3.160)
1 —5—1I —a
+ 5 (0405915 + 01059,6) VU 7 — graTas D0 70,
Then for the last two terms, we can swap the order of the ¥ to get
T , —I —I
2L =g1;0"¢7 +1i (gIJDt'éD 7 — g Dt@/f]) (3.161)
1 —5 T —a
+3 (0405911 + 0101945) W O Y + gryTL T spp 0"

Note that since the metric tensor is symmetric while the ¢ are antisymmetric we can

subtract off terms that are equal to zero.

2L =gr;9' 7 +i (gIJDtEI@bJ - gIJEIDMJ)

1 -5 —
5 (0405910 + 010195 — 0105 — 0,05915) 70 V7Y (3.162)

+ grs (FéﬁFia - Fiyréa) TRV

Next note that the underline terms are equivalent to the Riemann-Curvature tensor
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Rkt to get
- , I I S —
2L = gy’ 7 +i (QIJDM Vv — gr Dt¢J) + Rryrp" 5.

Therefore the Lagrangian is

(

(3.163)

1 _ _ 1 o
L=5g10"6" + 5 (gthv,bIW — gmbIthJ) + §R,JKL¢’¢"¢K¢L, (3.164)

2

which is the same as before.

Also the SUSY relationships can be easily derived from
6" =eQd" + €QP’
where

Q == (39 + ’Lgat

Q= —0; —i00;.
So having Q and Q act on the superfield

0! = —y! —iF" + i0¢" — i000,0"

0! =9 —ioF! —i0d! — i080,0"
and taking the variation of the superfield
5! + 050" + 850" + i005F! = 60",
we have
56! + 050! + 050" + i05FT =< (—wf —fF +if! — w@atwf)

te (EI —iOFT — gt — w@aﬂ) .
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(3.168)

(3.169)

(3.170)

(3.171)
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Now equating the coefficients of the fermionic variables 6 and @ yields
60! = e — ey
ov! = e (id! +iF")
5y =€ (—z'gir’ n z'FJ> .
Now plugging in F! = iF{“ﬁanﬂ gives us
5ol = e’ — e’
60! = e (ig! — Ths"v’) .
I

60" = (—id” — Th0"v?)

3.4 Hamiltonian Picture

(3.172)
(3.173)

(3.174)

(3.175)

(3.176)

(3.177)

Now to quantize our system, in general we can find the conjugate momenta as

8£ 'I
pr = @ =919
— oc ; El
TG R
with the canonical (anti-)commutation relations
|:¢apJ:| = 255
—J
{v'yy=4¢".
For on S?, the conjugate momenta are
= Tzﬂgl

pa = r?sin? ¢l ¢,
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(3.181)

(3.182)

(3.183)
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Having the general form of conjugate momenta allows the supercharges to be rewritten

in terms on the conjugate momenta p; given by
—I
Q=1 pr (3.184)
QF = —ip;. (3.185)

Doing this for the S? supercharges yields the same result.
To find the quantum mechanical version of the Hamiltonian H, we need to con-
sider the ordering of the operators. In order to maintain the desired supersymmetry,

we will keep the ordering of the supersymmetric Hamiltonian as

{Q,Q"} = 2H. (3.186)

Also note that the supercharges @ and Q' have the opposite F-charge

[F,Q] =@ (3.187)
[F, Q'] = -Q". (3.188)

Consequently, is easy to see that F' commutes with the Hamiltonian H
[H, F] = 0. (3.189)

This means that F'is a conserved charge in the quantum theory. Since F' generaterms
the phase rotation, shown earlier in the Noether charge derivation, we can call this
the femri number operator.

To finish up the quantization process, we need to specify the representation of
the above algebra of observables. Here a natural choice is to use the representation

on the space of differential forms,

H=Q(M)&C, (3.190)
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paired with the Hermitian inner product

<CU1,CU2> = / wl VAN *Wa, (3191)
M

where * is the Hodge star operator. The observables are represented on this Hilbert

space as the operators given by

o' =’ (3.192)
pr= —iVy, (3.193)
O = di' A, (3.194)
O =9"15/007, (3.195)

where the dot represents the act of multiplication, V; is the covariant derivative,
dx! is a differential form, A is an anti-symmetric product, and ¢y is the operation of
contraction of the differential form with the vector field V.

To show that these observables can be represented as these operators, all we
need to show is that they preserve the (anti-)commutation relationships. For the

commutator we have

= —1 I:.'I;I,VJ}
=4 (xIVJ — VJxI) (3.196)
= —1 (xIVJ —(5§ —xIVJ)

For the anti-commutator acting on a p-forms, we have to consider two cases: when
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J € {iy,...,ip} or when J & {iy,...,i,}. So when J € {iy,...,i,} we have

{wl,EJ}dx“ A ANdx = {gIKL(g/amK, de/ AYdz™ A LA datr (3.197)
= (9" vojaercda” N +da’ A g™ 150, ) dz™ AN da
= gIK (d:c"/\) L8)9xK (alﬂci1 Ao A dxip)
= g% (1) da? Adat AL AN AT AdT N LA da

= gldx AL A dar.
Now for when J ¢ {iy,...,i,}, we have

{Q/JI,EJ}dx“ A ANdzt = {gIKLa/axK, dar:J/\}da:i1 A ANdt (3.198)
= (gIKLa/ade$J VAN +dl’J VAN gIKLa/azK) dxil VARRA dﬂ?ip
= g'"K5hdr™ N A datr

= gda AL A datr

Here the supercharges are given as

Q=i pr=de! N\V;=del N0y = d (3.199)
Qf = —i'pr = —g"igo, Vi = d (3.200)
where d is the exterior derivative acting on differential forms and 9; = %. This

makes the Hamiltonian H become

(dd' + d'd) = %A (3.201)

N | —

H={Q.Q" =

where A is the Laplace-Beltrami operator. Thus, the supersymmetric ground states,
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or the zero energy states, are simply the harmonic forms
Hioy = H(M,g) = PH (M, g), (3.202)
p=0

where H(M, g) is the space of harmonic forms of the Riemannian manifold (M, g),
and HP(M, g) is the space of harmonic p-forms.

Now recall that the space of supersymmetric ground states can be characterized
as the cohomology of the Q-operator. In the present case, since there is a conserved

charge F' with
[F,Q] =@, (3.203)
the @-complex and the )-cohomology are graded by the fermion number
Flormy = pld. (3.204)

Since this is the form-degree and @) is identified as the exterior derivative d, the graded

(-cohomology is the de Rham cohomology []gﬂ
H(Q) = Hpp(M). (3.205)
From the general structure of supersymmetric quantum mechanics, we have
Hoy =H(M,g) = H*(Q) = Hpr(Q). (3.206)
With respect to the F-charge, this refines to

HP (M., g) = Hpp(Q). (3.207)
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The supersymmetric index is the Euler characteristic of the ()-complex, namely

n n

Tr(—1)" = > (=1)PdimH?(Q) = > (—=1)PdimH},(Q) = x(M), (3.208)

p=0 p=0
which is the Euler number of the manifold. Here deformation invariance is the familiar
statement that the harmonic forms are equal to the de Rham cohomology classes,

which are diffeomorophism invariants .
3.4.1 Example: S?

To calculate the Hamiltonians for S?, we are going use eq.(3.202). Specifically,
since S? only depends on two variables, the calculations will include 0,1, and 2-forms.

So starting with a 0-form f,, we have

Hfo(a',2*) = = (dd" + d'd) fo, (3.209)

N | —

where 2! and 22 are 6, ¢ respectively. Since we have a O-form f;, the d! will annihilate

Jo.
Lt
Hfy = §d d fo (3.210)
Using the definition for d and d', we have
1
Hfo = —§gIKV[8Jf0La/aIKd£L'J (3.211)

Now evaluating the contraction we have

1
Hfy = —§9IKV13Jf05}](, (3.212)
which further simplfies to
1
Hfo = —§QUV13Jf0- (3.213)
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Expanding this out, we have
1
Hf() = —ég” ((918J — Pﬁé‘K) fo. (3214)

Now expanding the summations gives us

1

Hfy=— |

9118181f0 + 922(8282f0 — Fé281f0):| . (3215)
Using the Connection coefficients from eq.(3.55-56) and the metric tensor from eq.(3.54),

we have

1

1
Hfy=— [ 8131f0+
sin% 6

(8262f0 + sin 6 cos 981f0)j| . (3216)

Simplify this gives us

1 1
HfO — |: a1a1f0 —|— 82(92f0 —|— 0 COS 981f0:| . (3217)
Now we can rewrite cosf = 9;sinf and 1 = %

1
Hfy=—=

1 1
————sin 00,0 —_—
2 La sin $in 60101 fo + r2 sin®

1
3282f0 —+ 2—31 sin 931f0:| s (3218)
r2sin@

so that we can undo the product rule for the first and third terms to get

1

1
Hfo = —5 {ma (Sln Halfo)

1

700 fo] . (3.219)

This conveniently works out to be the angular momentum operator squared L? in

spherical coordinates with constant radial component
L2
Now for the 1-forms f, (2!, 2?)dx™ where n € {1,2}, we have

Hf, (2", 2%)dz"™ = = (dd' + d'd) f,dz". (3.221)

DN | —
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Here we will ignore the Einstein sum convention over the index n since we are only
considering the cases when n = 1 or n = 2 and they are independent of each other.

Using the definition for d and d', we have

Hf,dz" = —% [dz" A Or (975 1900V 7) + 6" 19 )0ux Vidz” A Oy] fuda™.  (3.222)
Now distributing the 1-form f,,dx™, gives us

Hf,dz" = —% [81 (gJKa]fn) Shdr’ + gIKV[annLa/axK (de A d:c”)] . (3.223)

This allows us to evaluate the summation over K in the first term and the contractions

in the second term to get
Hf,dx" = —% [81 (g‘]”a;fn) do! + gIKVI(‘?an&[I(d:U" — gIvaajfné}de‘]} . (3.224)
From here we can evaluate the remain sum over K to get
Hf,dz" = —% [81 (g‘]"a]fn) de! + ¢!’V 0, fodx™ — glnvlajfndx‘q ) (3.225)
For n =1, we get
H fida' = —% [0r (g7 05 f1) da’ + g™V 105 frda' — g™V 10, frda?] . (3.226)
Since the metric tensor is symmetric, we must have
H fida' = —% (9" 0101 frda' + "'V 10, frda' — ¢"'V10, frda”] . (3.227)

Expanding out the covariant derivatives in the first and third terms gives us

1
Hfidx' = — 3 [gualalfldx[ + ¢’V 10, frda!

—g" (810, — T10k) frdz’]. (3.228)
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Since partial derivatives can commute with each other, the underlined terms cancel

each other.

Hfidz' = — % [g”VI@Jfldxl + gllfﬁaKfldx‘]] ) (3.229)
Expanding the remaining summations in the second term gives us

Hfidz' = — % [g”VI@Jfldxl + gHFfQ@gfldmz] ) (3.230)

Using the previous results for the O-form, the connection coefficients, and metric

tensor we get
H fdax! 2# [L2f1da:1 — cot, Gﬁgfldxﬂ ) (3.231)
Now for n = 2, we have
H foda® = —% [81 (gJ28Jf2) da’ + ¢"'V 10, foda? — gI2VI8Jf2d.'L'J:| ) (3.232)

Using the product rule for the first term and expanding the covariant derivative in

the third term gives us

1
H fodz® = — 3 (019720, + g7%010) foda" + g"7V 10, foda?

—9" (910s = T10k) fada] . (3.233)

Since derivatives commute with each other, the underlined terms cancel each other

yielding,
1
H foda® = — 3 (019720, fodx" + ¢"'V 10 fodz® + g"T 1,0k foda”] . (3.234)
Since the metric tensor is symmetric, we must have

1
H foda® = — 3 (0197205 foda’ + "'V 10 foda® + g% T, 0k fodz’] . (3.235)
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Now expanding out the summations on the third term gives us

1
H foda® = = 0190 foda” + g"V 10, fdar®

+922F5281f2dl’2 + g22F§182f2d$1] . (3236)

L we must have

: 22 _
Since g% = 5=5—

21

1
Hfgdl’Q == 3192232f2dI1 + gIJvlan2d$2

+g2TL0, foda® + gT2,0 dexl] . (3.237)

Due to metric compatibility, V;¢/% = 0, and the connections being symmetric in the

lower indices, we can rewrite the underlined terms to get
1
H foda® = — 3 [—97°T5,02 fodz' + g™V 10 fodz® + gPT3,01 foda?] . (3.238)

Using the results for the O-form, the connections, and metric tensor we have

1 [cotd
H fds? = g;l—zeaQ fodat + (L + cot 00,) foda? . (3.239)

Now for the 2-form fio(z!, 2?)dz! A dx?, we have

H fra(z!,2?)dz' Ada® = = (dd' + d'd) frada' A da®. (3.240)

| —

Since we are dealing with the surface of a sphere, there are no 3-forms. Therefore,

the second term is zero.
1
Hflgdl‘l A dl‘2 = §dde12d1'1 VAN dl’z. (3241)
Now using the definition of d and d', we have

1
Hf12d331 VAN dl’z = —Edl'l AN 8[ (gJKba/azKVJ) flzdl’l AN diL‘2. (3242)
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Now because of metric compatibility, we have
H frodat A da? = —%gJKﬁlanlgdxl A Lg)ozK (dac]L A de) ) (3.243)
This allows us to evaluate the contractions to get
H fioda A da? = —%g‘”{&@]flz (5}{(1:1:[ A dz? A —(ﬁ{dazl A dxl) ) (3.244)
Evaluating the summation over K, gives us
H frodat A da? = —% [ngajanlzdxl A dx® — 72010 fradx! A dxl] ) (3.245)
Since the metric tensor is symmetric, we must have
H frodat A da? = —% [gllﬁlﬁlflzdxl A dx® — %2010, froda A dsr:l] ) (3.246)

Now since the wedge product is anti-symmetric, we must have

1
andl)l A dl‘z = —5 [g”@lﬁlflgdazl VAN dl’z — g228202f12dx2 A dxl] . (3247)

Now switching the order of the 1-forms in the second term and fully expanding each

term yields

1

sin? 6

Dr0o | frodx' A da?. (3.248)

1
Hflzd.'El VAN d.’L’2 = —— 8181 +
2r2
3.5 Deformation by Potential Theory

Now consider modifying the Lagrangian by adding a potential term constructed

by a function h such that

h:M —R. (3.249)
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This modification is given by addition of
AL = —%g”@;h&;h — Dyd (3.250)
to the Lagrangian where
Di0sh = 0;0;h — T',0kh. (3.251)

The supersymmetry relation are modified as

5o = e — el (3.252)
Sl = e (wf — 1L+ gf“aah) (3.253)
50 =€ (—z‘q'af —TL %P + gfaaah) . (3.254)

Similarly, the supercharges are modified as

Qu =" (ig1s8" +0rh) =¥ (ipr + O1h) (3.255)

Q) = 0" (~igrsd” + orh) = w' (=ips + O4h) . (3.256)

Under these modifications, the fermion rotation symmetry is preserved and the con-

served charge is again
—I
F =g 1/)‘]- (3.257)

As usual, the canonical commutation relation and the same representation of the
algebra of variables remains unchanged from our original theory. In particular, the

Hilbert space of states is the space of differential forms Q°*(M). From here, we can
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see that the supercharges are represented as

Qn=d+d¢" Noth =d+dh = e "de" =: d, (3.258)

QI = (d+dh)" = etdle™ = d . (3.259)
The Hamiltonian is chosen so that the supersymmetry relation holds, namely
Lo ot X (ad +d
H = 5@}»; Q= 3 (dhdh + dhdh) (3.260)

The space of supersymmetric ground states is isomorphic to the cohomology Q-group
of the Qp-operator. Since the conserved fermion number F' counts the form-degree,
and @)y, has charge 1, the -complex and cohomology are graded by the form-degree.
However, this @), and the Qg before the deformation are related by the similarity

transformation

Qn = e "Qoe", (3.261)

and the @)-complex is isomorphic to the old one. Therefore,
Hipy = H(Q) = H? (Qo) = Hpp (M). (3.262)

In particular, the dimension of the supersymmetric ground states is independent of

the choice of the function h.
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Appendix A

Z-GRADING

In mathematics, a graded space is a space that has the extra structure of a grading
or a gradation, which is a decomposition of the space into a direct sum of subspaces.
This can be denoted as
A=P A (A1)
i€T
where A is some space, A; C A, and Z is some indexing set.
Now first consider the set of integers Z = Z. This makes A a Z-graded space as
A=A, (A.2)
nez

Next consider an operator F': A — A defined as F' acting on x € A such that

FlAn =n Id|An (Ag)

For example, let ¢; ... ¢; [0) = |v;) € Ay, then

Fip; ..oab; [0) = kb, ..., [0) =k |ug), (A.4)

where 1, are fermionic variables. From here we can see that F' counts the number

of fermionic variables. Now using the fermi number operator F', we construct the a

grading such that

0, |’Uk> € AQn

1, ’Uk> € Aoni1
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Physically, the even space is associated with the bosons while the odd space is asso-

ciated with the fermions. This can be denoted as
A=A AF, (A.6)
where

AP = P Aay (A.7)

nezZ

A" = P Az (A.8)

neZ

We can see that this is the same as considering the set
Z,=7Z\nZ. (A.9)

for the special case when n = 2 as the indexing set. So if this set had been used
initially as the indexing set, the information about which particular subspace Ay the
ket |vx) belonged would have been lost.

To show that the Zy-graded complex shown in eq.(2.20) splits into a Z-graded

complex when

F.Ql =0, (A.10)
first consider when |v) € HZ @ HY. By letting the commutator act on |v), we have
(FQ—QF)[v) = QJv). (A.11)
Then decomposing the vector into bosonic and fermionic parts

(FQ—-QF)vp) + (FQ = QF)|vr) = Qlvp) + Q |vr). (A.12)
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Since

FIHP =0 (A.13)
FIHE =1, (A.14)

we have
FQvp) + (FQ — Q) vp) = Q|vg) + Q). (A.15)

Here we can equate coefficient to get

FQ |’UB> = Q |UB> (A16)

(FQ — Q) |lvp) = Q |vp) . (A.17)
Now solving for F', we can see that

Floug) =1= Fljup +1 (A.18)

Floue =2 = Flopy + 1. (A.19)
So in a Z-graded hilbert space, a state |v;) € H acted on by F is
F I’Uk> =k |Uk> . (A20)

When it is the case in eq.(A.10), @ acts as

Qlox) = (FQ + QF) [vg) . (A.21)
By eq.(A.20), we have
Qlok) = (FQ + kQ) [vx) - (A.22)
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Now solving for F'Q |vi), we have

FQlvg) = (k+1)Qvx) -

From here, we can see that

Q: Hi — Hit1,

giving us the Z-graded complex in eq.(2.26).
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Appendix B

WITTEN INDEX

If 5 € C such that [ scales the Hamiltonian H and maintains being Hermitian,
[ deforms that theory leading to the invariant, as shown in the calculation below,
called the Witten index. To show that the Witten index is an invariant defined in
eq.(2.19), first assume the Hamiltonian H is diagonalizable and dimH,) < oco. Since

the Hamiltonian H has an eigenvalue of E,
(=D o) = (=1)Te " |v). (B.1)

Here  makes the exponent unitless and can vary in meaning depending on the context
of the physics the Hamiltonian models. For our purposes, consider § as Wick time
on Sé. Since the state |v) can be decomposed into a bosonic and a fermionic part,

the Z,-grading assigns a negative sign to the H’ state.
(=D o) = e (Jug) — |vr)) . (B.2)

Now looking at the trace explicitly, it can be rewritten as a sum of traces restricted

to the individual spaces H )
Tr(—1)" e P = " Tr(—1) ey, . (B.3)
n=0

Since the Zy-grading (—1)* commutes with the Hamiltonian H, (—1)" preserves H,

exactly as in eq.(2.12). This allows us to decompose H ) into a bosonic part and a
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fermionic part as in eq.(2.13). Therefore

Tr(—1)Fe P = ZTre —BH |HB —ZTre BH|H5L). (B.4)

Since the exponentiated Hamiltonian is acting on its eigenstate, we have

Tr(—1)Fe Pt = Ze‘BE"TrId|HB —Ze—ﬂEnﬂId|HF. (B.5)

n=0

Then evaluating the trace gives us

Tr(—1)Fe P = ZeﬁEn (dimH ) — dimH{,). (B.6)

n=0

Since the bosonic and the fermionic states are paired at each excited energy level,

only the ground state with energy Ej survives:
Tr(—1) e = e PP (dimH ) — dimH (). (B.7)
Here the ground state energy is Fy = 0, which yields

Tr(—1)"e " = (dimH ), — dimH ;). (B.8)
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Appendix C

THE HARMONIC OSCILLATOR

In order to find the energy states of the harmonic oscillator where w > 0

H = % (p2 —|—w2x2) ,

(C.1)

the Hamiltonian H can be factored to define creation and annihilation operators as

al = L (—ip + wz)
V2w
—(ip +wa)
a= ip + ww) .
V2w b

Now multiplying the two operators together gets

ala = (p2 + w?z? 4 dwrp — iwpx)

1
2w
1

aal = (p2 + w?z? —iwap + z'wpm) .

2w

Noting that the non-squared terms is a commutator, we have

ala = (p2 + w?z? +iw [:c,p])

(p2 + w?a? —iw [x,p]) )

1
2w

1
T =
aa 7

Since the canonical commutation relation [z, p] = i, we must have

1
to_ L2 2.2
aa—2w(p+wx w)
1
2w

aad = — (p* + w2’ +w).
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Now subtracting eq.(C.8) from eq.(C.9), we get
[a,a'] = 1. (C.10)
Also both eq.(C.8) and eq.(C.9) can be rewritten as
w(a'a+ LA
5) =
1
2 ) =
w (aa 2)

Since the Harmonic oscillator will have a lowest energy state |Ep), this states must

(p* + w?a?) (C.11)

(p* + w?a?). (C.12)

N = DN =

be annihilated when acted on by the Hamiltonian. Therefore using eq.(C.1), the
Hamiltonian can be expressed in terms of the creation and annihilation operators
a', a respectively as

H=uw (aTa—l—%). (C.13)

From here, the Hamiltonian can act on the lowest eigenstate |FEy)
i 1

Since the system is in its lowest energy state, the state gets annihilated by the operator

a. This leaves
1

Now that the lowest energy value has been found, we can examine how operators a'

and a with the Hamiltonian H. So looking at the commutator for a' and H

[H,a'] = Ha' — a'H, (C.16)
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we can use eq.(C.13) to get

1 1
[H,al] =w <aTa + 5) al —alw (aTa + 5) :
which reduces to
[H, aw =w (aTaaT - aTaTa) .
Now using eq.(C.10) in the second term,
[H, aT] =w (aTaaT —al (anr — 1)) ,
which reduces to
[H , aq = wal.
Similarly looking at the commutator for a and H
[H,a] = Ha — aH,
we can use eq.(C.13) to get
Hyal|=wl|ad'a+ = |a—aw|a'a+ <),
2 2
which reduces to
[H,a] = w (a'aa — ad'a) .
Now using eq.(C.10) in the second term,

[H,a] = w (aTaa —a (aTa—l— 1)) ,
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which reduces to
[H,a] = —wa. (C.25)

Now consider the Hamiltonian H acting on the eigenstate af |E), if we use the com-

mutation relation from eq.(C.20), the states becomes
Hd' |E) = (a'H + wal) |E). (C.26)
Since |E) is an eigenstate of H,
Hd' |E) = (Ed' + wal) |E). (C.27)
Now factoring out the a'
Hd' |E) = (E+w)ad' |E), (C.28)

it is the case that H has an eigenvalue for the raise energy state af |E). So starting
from the lowest energy state, we can construct the “ladder” of energy states by
iteratively repeating this calculation from eq.(C.26) to eq.(C.28). Therefore on the n'h

time this calculation is repeated, the spectrum of the Hamiltonian can be determined

as

HIE,) = w (n + %) IE,). (C.29)
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